Metamath Proof Explorer


Theorem bccld

Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses bccld.n
|- ( ph -> N e. NN0 )
bccld.k
|- ( ph -> K e. ZZ )
Assertion bccld
|- ( ph -> ( N _C K ) e. NN0 )

Proof

Step Hyp Ref Expression
1 bccld.n
 |-  ( ph -> N e. NN0 )
2 bccld.k
 |-  ( ph -> K e. ZZ )
3 bccl
 |-  ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) e. NN0 )
4 1 2 3 syl2anc
 |-  ( ph -> ( N _C K ) e. NN0 )