| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bcval2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 2 |
|
fznn0sub2 |
|- ( K e. ( 0 ... N ) -> ( N - K ) e. ( 0 ... N ) ) |
| 3 |
|
bcval2 |
|- ( ( N - K ) e. ( 0 ... N ) -> ( N _C ( N - K ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( N - K ) ) ) x. ( ! ` ( N - K ) ) ) ) ) |
| 4 |
2 3
|
syl |
|- ( K e. ( 0 ... N ) -> ( N _C ( N - K ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( N - K ) ) ) x. ( ! ` ( N - K ) ) ) ) ) |
| 5 |
|
elfznn0 |
|- ( ( N - K ) e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
| 6 |
5
|
faccld |
|- ( ( N - K ) e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. NN ) |
| 7 |
6
|
nncnd |
|- ( ( N - K ) e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. CC ) |
| 8 |
2 7
|
syl |
|- ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. CC ) |
| 9 |
|
elfznn0 |
|- ( K e. ( 0 ... N ) -> K e. NN0 ) |
| 10 |
9
|
faccld |
|- ( K e. ( 0 ... N ) -> ( ! ` K ) e. NN ) |
| 11 |
10
|
nncnd |
|- ( K e. ( 0 ... N ) -> ( ! ` K ) e. CC ) |
| 12 |
8 11
|
mulcomd |
|- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) = ( ( ! ` K ) x. ( ! ` ( N - K ) ) ) ) |
| 13 |
|
elfz3nn0 |
|- ( K e. ( 0 ... N ) -> N e. NN0 ) |
| 14 |
|
elfzelz |
|- ( K e. ( 0 ... N ) -> K e. ZZ ) |
| 15 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 16 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 17 |
|
nncan |
|- ( ( N e. CC /\ K e. CC ) -> ( N - ( N - K ) ) = K ) |
| 18 |
15 16 17
|
syl2an |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( N - ( N - K ) ) = K ) |
| 19 |
13 14 18
|
syl2anc |
|- ( K e. ( 0 ... N ) -> ( N - ( N - K ) ) = K ) |
| 20 |
19
|
fveq2d |
|- ( K e. ( 0 ... N ) -> ( ! ` ( N - ( N - K ) ) ) = ( ! ` K ) ) |
| 21 |
20
|
oveq1d |
|- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - ( N - K ) ) ) x. ( ! ` ( N - K ) ) ) = ( ( ! ` K ) x. ( ! ` ( N - K ) ) ) ) |
| 22 |
12 21
|
eqtr4d |
|- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) = ( ( ! ` ( N - ( N - K ) ) ) x. ( ! ` ( N - K ) ) ) ) |
| 23 |
22
|
oveq2d |
|- ( K e. ( 0 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( N - K ) ) ) x. ( ! ` ( N - K ) ) ) ) ) |
| 24 |
4 23
|
eqtr4d |
|- ( K e. ( 0 ... N ) -> ( N _C ( N - K ) ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 25 |
1 24
|
eqtr4d |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( N _C ( N - K ) ) ) |
| 26 |
25
|
adantl |
|- ( ( ( N e. NN0 /\ K e. ZZ ) /\ K e. ( 0 ... N ) ) -> ( N _C K ) = ( N _C ( N - K ) ) ) |
| 27 |
|
bcval3 |
|- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
| 28 |
|
simp1 |
|- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> N e. NN0 ) |
| 29 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 30 |
|
zsubcl |
|- ( ( N e. ZZ /\ K e. ZZ ) -> ( N - K ) e. ZZ ) |
| 31 |
29 30
|
sylan |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( N - K ) e. ZZ ) |
| 32 |
31
|
3adant3 |
|- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N - K ) e. ZZ ) |
| 33 |
|
fznn0sub2 |
|- ( ( N - K ) e. ( 0 ... N ) -> ( N - ( N - K ) ) e. ( 0 ... N ) ) |
| 34 |
18
|
eleq1d |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( N - ( N - K ) ) e. ( 0 ... N ) <-> K e. ( 0 ... N ) ) ) |
| 35 |
33 34
|
imbitrid |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( N - K ) e. ( 0 ... N ) -> K e. ( 0 ... N ) ) ) |
| 36 |
35
|
con3d |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( -. K e. ( 0 ... N ) -> -. ( N - K ) e. ( 0 ... N ) ) ) |
| 37 |
36
|
3impia |
|- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> -. ( N - K ) e. ( 0 ... N ) ) |
| 38 |
|
bcval3 |
|- ( ( N e. NN0 /\ ( N - K ) e. ZZ /\ -. ( N - K ) e. ( 0 ... N ) ) -> ( N _C ( N - K ) ) = 0 ) |
| 39 |
28 32 37 38
|
syl3anc |
|- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C ( N - K ) ) = 0 ) |
| 40 |
27 39
|
eqtr4d |
|- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = ( N _C ( N - K ) ) ) |
| 41 |
40
|
3expa |
|- ( ( ( N e. NN0 /\ K e. ZZ ) /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = ( N _C ( N - K ) ) ) |
| 42 |
26 41
|
pm2.61dan |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) = ( N _C ( N - K ) ) ) |