| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzctr | 
							 |-  ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bcval2 | 
							 |-  ( N e. ( 0 ... ( 2 x. N ) ) -> ( ( 2 x. N ) _C N ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` ( ( 2 x. N ) - N ) ) x. ( ! ` N ) ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							 |-  ( N e. NN0 -> ( ( 2 x. N ) _C N ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` ( ( 2 x. N ) - N ) ) x. ( ! ` N ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							nn0cn | 
							 |-  ( N e. NN0 -> N e. CC )  | 
						
						
							| 5 | 
							
								4
							 | 
							2timesd | 
							 |-  ( N e. NN0 -> ( 2 x. N ) = ( N + N ) )  | 
						
						
							| 6 | 
							
								4 4 5
							 | 
							mvrladdd | 
							 |-  ( N e. NN0 -> ( ( 2 x. N ) - N ) = N )  | 
						
						
							| 7 | 
							
								6
							 | 
							fveq2d | 
							 |-  ( N e. NN0 -> ( ! ` ( ( 2 x. N ) - N ) ) = ( ! ` N ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq1d | 
							 |-  ( N e. NN0 -> ( ( ! ` ( ( 2 x. N ) - N ) ) x. ( ! ` N ) ) = ( ( ! ` N ) x. ( ! ` N ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq2d | 
							 |-  ( N e. NN0 -> ( ( ! ` ( 2 x. N ) ) / ( ( ! ` ( ( 2 x. N ) - N ) ) x. ( ! ` N ) ) ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							eqtrd | 
							 |-  ( N e. NN0 -> ( ( 2 x. N ) _C N ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) )  |