Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = 4 -> ( 4 ^ x ) = ( 4 ^ 4 ) ) |
2 |
|
id |
|- ( x = 4 -> x = 4 ) |
3 |
1 2
|
oveq12d |
|- ( x = 4 -> ( ( 4 ^ x ) / x ) = ( ( 4 ^ 4 ) / 4 ) ) |
4 |
|
oveq2 |
|- ( x = 4 -> ( 2 x. x ) = ( 2 x. 4 ) ) |
5 |
4 2
|
oveq12d |
|- ( x = 4 -> ( ( 2 x. x ) _C x ) = ( ( 2 x. 4 ) _C 4 ) ) |
6 |
3 5
|
breq12d |
|- ( x = 4 -> ( ( ( 4 ^ x ) / x ) < ( ( 2 x. x ) _C x ) <-> ( ( 4 ^ 4 ) / 4 ) < ( ( 2 x. 4 ) _C 4 ) ) ) |
7 |
|
oveq2 |
|- ( x = n -> ( 4 ^ x ) = ( 4 ^ n ) ) |
8 |
|
id |
|- ( x = n -> x = n ) |
9 |
7 8
|
oveq12d |
|- ( x = n -> ( ( 4 ^ x ) / x ) = ( ( 4 ^ n ) / n ) ) |
10 |
|
oveq2 |
|- ( x = n -> ( 2 x. x ) = ( 2 x. n ) ) |
11 |
10 8
|
oveq12d |
|- ( x = n -> ( ( 2 x. x ) _C x ) = ( ( 2 x. n ) _C n ) ) |
12 |
9 11
|
breq12d |
|- ( x = n -> ( ( ( 4 ^ x ) / x ) < ( ( 2 x. x ) _C x ) <-> ( ( 4 ^ n ) / n ) < ( ( 2 x. n ) _C n ) ) ) |
13 |
|
oveq2 |
|- ( x = ( n + 1 ) -> ( 4 ^ x ) = ( 4 ^ ( n + 1 ) ) ) |
14 |
|
id |
|- ( x = ( n + 1 ) -> x = ( n + 1 ) ) |
15 |
13 14
|
oveq12d |
|- ( x = ( n + 1 ) -> ( ( 4 ^ x ) / x ) = ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) ) |
16 |
|
oveq2 |
|- ( x = ( n + 1 ) -> ( 2 x. x ) = ( 2 x. ( n + 1 ) ) ) |
17 |
16 14
|
oveq12d |
|- ( x = ( n + 1 ) -> ( ( 2 x. x ) _C x ) = ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) ) |
18 |
15 17
|
breq12d |
|- ( x = ( n + 1 ) -> ( ( ( 4 ^ x ) / x ) < ( ( 2 x. x ) _C x ) <-> ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) < ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) ) ) |
19 |
|
oveq2 |
|- ( x = N -> ( 4 ^ x ) = ( 4 ^ N ) ) |
20 |
|
id |
|- ( x = N -> x = N ) |
21 |
19 20
|
oveq12d |
|- ( x = N -> ( ( 4 ^ x ) / x ) = ( ( 4 ^ N ) / N ) ) |
22 |
|
oveq2 |
|- ( x = N -> ( 2 x. x ) = ( 2 x. N ) ) |
23 |
22 20
|
oveq12d |
|- ( x = N -> ( ( 2 x. x ) _C x ) = ( ( 2 x. N ) _C N ) ) |
24 |
21 23
|
breq12d |
|- ( x = N -> ( ( ( 4 ^ x ) / x ) < ( ( 2 x. x ) _C x ) <-> ( ( 4 ^ N ) / N ) < ( ( 2 x. N ) _C N ) ) ) |
25 |
|
6nn0 |
|- 6 e. NN0 |
26 |
|
7nn0 |
|- 7 e. NN0 |
27 |
|
4nn0 |
|- 4 e. NN0 |
28 |
|
0nn0 |
|- 0 e. NN0 |
29 |
|
4lt10 |
|- 4 < ; 1 0 |
30 |
|
6lt7 |
|- 6 < 7 |
31 |
25 26 27 28 29 30
|
decltc |
|- ; 6 4 < ; 7 0 |
32 |
|
2cn |
|- 2 e. CC |
33 |
|
2nn0 |
|- 2 e. NN0 |
34 |
|
3nn0 |
|- 3 e. NN0 |
35 |
|
expmul |
|- ( ( 2 e. CC /\ 2 e. NN0 /\ 3 e. NN0 ) -> ( 2 ^ ( 2 x. 3 ) ) = ( ( 2 ^ 2 ) ^ 3 ) ) |
36 |
32 33 34 35
|
mp3an |
|- ( 2 ^ ( 2 x. 3 ) ) = ( ( 2 ^ 2 ) ^ 3 ) |
37 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
38 |
37
|
eqcomi |
|- 4 = ( 2 ^ 2 ) |
39 |
|
4m1e3 |
|- ( 4 - 1 ) = 3 |
40 |
38 39
|
oveq12i |
|- ( 4 ^ ( 4 - 1 ) ) = ( ( 2 ^ 2 ) ^ 3 ) |
41 |
36 40
|
eqtr4i |
|- ( 2 ^ ( 2 x. 3 ) ) = ( 4 ^ ( 4 - 1 ) ) |
42 |
|
3cn |
|- 3 e. CC |
43 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
44 |
42 32 43
|
mulcomli |
|- ( 2 x. 3 ) = 6 |
45 |
44
|
oveq2i |
|- ( 2 ^ ( 2 x. 3 ) ) = ( 2 ^ 6 ) |
46 |
|
2exp6 |
|- ( 2 ^ 6 ) = ; 6 4 |
47 |
45 46
|
eqtri |
|- ( 2 ^ ( 2 x. 3 ) ) = ; 6 4 |
48 |
|
4cn |
|- 4 e. CC |
49 |
|
4ne0 |
|- 4 =/= 0 |
50 |
|
4z |
|- 4 e. ZZ |
51 |
|
expm1 |
|- ( ( 4 e. CC /\ 4 =/= 0 /\ 4 e. ZZ ) -> ( 4 ^ ( 4 - 1 ) ) = ( ( 4 ^ 4 ) / 4 ) ) |
52 |
48 49 50 51
|
mp3an |
|- ( 4 ^ ( 4 - 1 ) ) = ( ( 4 ^ 4 ) / 4 ) |
53 |
41 47 52
|
3eqtr3ri |
|- ( ( 4 ^ 4 ) / 4 ) = ; 6 4 |
54 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
55 |
54
|
oveq2i |
|- ( 2 x. 4 ) = ( 2 x. ( 3 + 1 ) ) |
56 |
55 54
|
oveq12i |
|- ( ( 2 x. 4 ) _C 4 ) = ( ( 2 x. ( 3 + 1 ) ) _C ( 3 + 1 ) ) |
57 |
|
bcp1ctr |
|- ( 3 e. NN0 -> ( ( 2 x. ( 3 + 1 ) ) _C ( 3 + 1 ) ) = ( ( ( 2 x. 3 ) _C 3 ) x. ( 2 x. ( ( ( 2 x. 3 ) + 1 ) / ( 3 + 1 ) ) ) ) ) |
58 |
34 57
|
ax-mp |
|- ( ( 2 x. ( 3 + 1 ) ) _C ( 3 + 1 ) ) = ( ( ( 2 x. 3 ) _C 3 ) x. ( 2 x. ( ( ( 2 x. 3 ) + 1 ) / ( 3 + 1 ) ) ) ) |
59 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
60 |
59
|
oveq2i |
|- ( 2 x. 3 ) = ( 2 x. ( 2 + 1 ) ) |
61 |
60 59
|
oveq12i |
|- ( ( 2 x. 3 ) _C 3 ) = ( ( 2 x. ( 2 + 1 ) ) _C ( 2 + 1 ) ) |
62 |
|
bcp1ctr |
|- ( 2 e. NN0 -> ( ( 2 x. ( 2 + 1 ) ) _C ( 2 + 1 ) ) = ( ( ( 2 x. 2 ) _C 2 ) x. ( 2 x. ( ( ( 2 x. 2 ) + 1 ) / ( 2 + 1 ) ) ) ) ) |
63 |
33 62
|
ax-mp |
|- ( ( 2 x. ( 2 + 1 ) ) _C ( 2 + 1 ) ) = ( ( ( 2 x. 2 ) _C 2 ) x. ( 2 x. ( ( ( 2 x. 2 ) + 1 ) / ( 2 + 1 ) ) ) ) |
64 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
65 |
64
|
oveq2i |
|- ( 2 x. 2 ) = ( 2 x. ( 1 + 1 ) ) |
66 |
65 64
|
oveq12i |
|- ( ( 2 x. 2 ) _C 2 ) = ( ( 2 x. ( 1 + 1 ) ) _C ( 1 + 1 ) ) |
67 |
|
1nn0 |
|- 1 e. NN0 |
68 |
|
bcp1ctr |
|- ( 1 e. NN0 -> ( ( 2 x. ( 1 + 1 ) ) _C ( 1 + 1 ) ) = ( ( ( 2 x. 1 ) _C 1 ) x. ( 2 x. ( ( ( 2 x. 1 ) + 1 ) / ( 1 + 1 ) ) ) ) ) |
69 |
67 68
|
ax-mp |
|- ( ( 2 x. ( 1 + 1 ) ) _C ( 1 + 1 ) ) = ( ( ( 2 x. 1 ) _C 1 ) x. ( 2 x. ( ( ( 2 x. 1 ) + 1 ) / ( 1 + 1 ) ) ) ) |
70 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
71 |
70
|
oveq2i |
|- ( 2 x. 1 ) = ( 2 x. ( 0 + 1 ) ) |
72 |
71 70
|
oveq12i |
|- ( ( 2 x. 1 ) _C 1 ) = ( ( 2 x. ( 0 + 1 ) ) _C ( 0 + 1 ) ) |
73 |
|
bcp1ctr |
|- ( 0 e. NN0 -> ( ( 2 x. ( 0 + 1 ) ) _C ( 0 + 1 ) ) = ( ( ( 2 x. 0 ) _C 0 ) x. ( 2 x. ( ( ( 2 x. 0 ) + 1 ) / ( 0 + 1 ) ) ) ) ) |
74 |
28 73
|
ax-mp |
|- ( ( 2 x. ( 0 + 1 ) ) _C ( 0 + 1 ) ) = ( ( ( 2 x. 0 ) _C 0 ) x. ( 2 x. ( ( ( 2 x. 0 ) + 1 ) / ( 0 + 1 ) ) ) ) |
75 |
33 28
|
nn0mulcli |
|- ( 2 x. 0 ) e. NN0 |
76 |
|
bcn0 |
|- ( ( 2 x. 0 ) e. NN0 -> ( ( 2 x. 0 ) _C 0 ) = 1 ) |
77 |
75 76
|
ax-mp |
|- ( ( 2 x. 0 ) _C 0 ) = 1 |
78 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
79 |
78
|
oveq1i |
|- ( ( 2 x. 0 ) + 1 ) = ( 0 + 1 ) |
80 |
79 70
|
eqtr4i |
|- ( ( 2 x. 0 ) + 1 ) = 1 |
81 |
70
|
eqcomi |
|- ( 0 + 1 ) = 1 |
82 |
80 81
|
oveq12i |
|- ( ( ( 2 x. 0 ) + 1 ) / ( 0 + 1 ) ) = ( 1 / 1 ) |
83 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
84 |
82 83
|
eqtri |
|- ( ( ( 2 x. 0 ) + 1 ) / ( 0 + 1 ) ) = 1 |
85 |
84
|
oveq2i |
|- ( 2 x. ( ( ( 2 x. 0 ) + 1 ) / ( 0 + 1 ) ) ) = ( 2 x. 1 ) |
86 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
87 |
85 86
|
eqtri |
|- ( 2 x. ( ( ( 2 x. 0 ) + 1 ) / ( 0 + 1 ) ) ) = 2 |
88 |
77 87
|
oveq12i |
|- ( ( ( 2 x. 0 ) _C 0 ) x. ( 2 x. ( ( ( 2 x. 0 ) + 1 ) / ( 0 + 1 ) ) ) ) = ( 1 x. 2 ) |
89 |
32
|
mulid2i |
|- ( 1 x. 2 ) = 2 |
90 |
88 89
|
eqtri |
|- ( ( ( 2 x. 0 ) _C 0 ) x. ( 2 x. ( ( ( 2 x. 0 ) + 1 ) / ( 0 + 1 ) ) ) ) = 2 |
91 |
72 74 90
|
3eqtri |
|- ( ( 2 x. 1 ) _C 1 ) = 2 |
92 |
86
|
oveq1i |
|- ( ( 2 x. 1 ) + 1 ) = ( 2 + 1 ) |
93 |
92 59
|
eqtr4i |
|- ( ( 2 x. 1 ) + 1 ) = 3 |
94 |
64
|
eqcomi |
|- ( 1 + 1 ) = 2 |
95 |
93 94
|
oveq12i |
|- ( ( ( 2 x. 1 ) + 1 ) / ( 1 + 1 ) ) = ( 3 / 2 ) |
96 |
95
|
oveq2i |
|- ( 2 x. ( ( ( 2 x. 1 ) + 1 ) / ( 1 + 1 ) ) ) = ( 2 x. ( 3 / 2 ) ) |
97 |
|
2ne0 |
|- 2 =/= 0 |
98 |
42 32 97
|
divcan2i |
|- ( 2 x. ( 3 / 2 ) ) = 3 |
99 |
96 98
|
eqtri |
|- ( 2 x. ( ( ( 2 x. 1 ) + 1 ) / ( 1 + 1 ) ) ) = 3 |
100 |
91 99
|
oveq12i |
|- ( ( ( 2 x. 1 ) _C 1 ) x. ( 2 x. ( ( ( 2 x. 1 ) + 1 ) / ( 1 + 1 ) ) ) ) = ( 2 x. 3 ) |
101 |
100 44
|
eqtri |
|- ( ( ( 2 x. 1 ) _C 1 ) x. ( 2 x. ( ( ( 2 x. 1 ) + 1 ) / ( 1 + 1 ) ) ) ) = 6 |
102 |
66 69 101
|
3eqtri |
|- ( ( 2 x. 2 ) _C 2 ) = 6 |
103 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
104 |
103
|
oveq1i |
|- ( ( 2 x. 2 ) + 1 ) = ( 4 + 1 ) |
105 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
106 |
104 105
|
eqtr4i |
|- ( ( 2 x. 2 ) + 1 ) = 5 |
107 |
59
|
eqcomi |
|- ( 2 + 1 ) = 3 |
108 |
106 107
|
oveq12i |
|- ( ( ( 2 x. 2 ) + 1 ) / ( 2 + 1 ) ) = ( 5 / 3 ) |
109 |
108
|
oveq2i |
|- ( 2 x. ( ( ( 2 x. 2 ) + 1 ) / ( 2 + 1 ) ) ) = ( 2 x. ( 5 / 3 ) ) |
110 |
|
5cn |
|- 5 e. CC |
111 |
|
3ne0 |
|- 3 =/= 0 |
112 |
32 110 42 111
|
divassi |
|- ( ( 2 x. 5 ) / 3 ) = ( 2 x. ( 5 / 3 ) ) |
113 |
109 112
|
eqtr4i |
|- ( 2 x. ( ( ( 2 x. 2 ) + 1 ) / ( 2 + 1 ) ) ) = ( ( 2 x. 5 ) / 3 ) |
114 |
102 113
|
oveq12i |
|- ( ( ( 2 x. 2 ) _C 2 ) x. ( 2 x. ( ( ( 2 x. 2 ) + 1 ) / ( 2 + 1 ) ) ) ) = ( 6 x. ( ( 2 x. 5 ) / 3 ) ) |
115 |
63 114
|
eqtri |
|- ( ( 2 x. ( 2 + 1 ) ) _C ( 2 + 1 ) ) = ( 6 x. ( ( 2 x. 5 ) / 3 ) ) |
116 |
|
6cn |
|- 6 e. CC |
117 |
|
2nn |
|- 2 e. NN |
118 |
|
5nn |
|- 5 e. NN |
119 |
117 118
|
nnmulcli |
|- ( 2 x. 5 ) e. NN |
120 |
119
|
nncni |
|- ( 2 x. 5 ) e. CC |
121 |
42 111
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
122 |
|
div12 |
|- ( ( 6 e. CC /\ ( 2 x. 5 ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( 6 x. ( ( 2 x. 5 ) / 3 ) ) = ( ( 2 x. 5 ) x. ( 6 / 3 ) ) ) |
123 |
116 120 121 122
|
mp3an |
|- ( 6 x. ( ( 2 x. 5 ) / 3 ) ) = ( ( 2 x. 5 ) x. ( 6 / 3 ) ) |
124 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
125 |
110 32 124
|
mulcomli |
|- ( 2 x. 5 ) = ; 1 0 |
126 |
116 42 32 111
|
divmuli |
|- ( ( 6 / 3 ) = 2 <-> ( 3 x. 2 ) = 6 ) |
127 |
43 126
|
mpbir |
|- ( 6 / 3 ) = 2 |
128 |
125 127
|
oveq12i |
|- ( ( 2 x. 5 ) x. ( 6 / 3 ) ) = ( ; 1 0 x. 2 ) |
129 |
123 128
|
eqtri |
|- ( 6 x. ( ( 2 x. 5 ) / 3 ) ) = ( ; 1 0 x. 2 ) |
130 |
61 115 129
|
3eqtri |
|- ( ( 2 x. 3 ) _C 3 ) = ( ; 1 0 x. 2 ) |
131 |
44
|
oveq1i |
|- ( ( 2 x. 3 ) + 1 ) = ( 6 + 1 ) |
132 |
|
df-7 |
|- 7 = ( 6 + 1 ) |
133 |
131 132
|
eqtr4i |
|- ( ( 2 x. 3 ) + 1 ) = 7 |
134 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
135 |
133 134
|
oveq12i |
|- ( ( ( 2 x. 3 ) + 1 ) / ( 3 + 1 ) ) = ( 7 / 4 ) |
136 |
135
|
oveq2i |
|- ( 2 x. ( ( ( 2 x. 3 ) + 1 ) / ( 3 + 1 ) ) ) = ( 2 x. ( 7 / 4 ) ) |
137 |
130 136
|
oveq12i |
|- ( ( ( 2 x. 3 ) _C 3 ) x. ( 2 x. ( ( ( 2 x. 3 ) + 1 ) / ( 3 + 1 ) ) ) ) = ( ( ; 1 0 x. 2 ) x. ( 2 x. ( 7 / 4 ) ) ) |
138 |
56 58 137
|
3eqtri |
|- ( ( 2 x. 4 ) _C 4 ) = ( ( ; 1 0 x. 2 ) x. ( 2 x. ( 7 / 4 ) ) ) |
139 |
|
10nn |
|- ; 1 0 e. NN |
140 |
139
|
nncni |
|- ; 1 0 e. CC |
141 |
|
7cn |
|- 7 e. CC |
142 |
141 48 49
|
divcli |
|- ( 7 / 4 ) e. CC |
143 |
32 142
|
mulcli |
|- ( 2 x. ( 7 / 4 ) ) e. CC |
144 |
140 32 143
|
mulassi |
|- ( ( ; 1 0 x. 2 ) x. ( 2 x. ( 7 / 4 ) ) ) = ( ; 1 0 x. ( 2 x. ( 2 x. ( 7 / 4 ) ) ) ) |
145 |
103
|
oveq1i |
|- ( ( 2 x. 2 ) x. ( 7 / 4 ) ) = ( 4 x. ( 7 / 4 ) ) |
146 |
32 32 142
|
mulassi |
|- ( ( 2 x. 2 ) x. ( 7 / 4 ) ) = ( 2 x. ( 2 x. ( 7 / 4 ) ) ) |
147 |
141 48 49
|
divcan2i |
|- ( 4 x. ( 7 / 4 ) ) = 7 |
148 |
145 146 147
|
3eqtr3i |
|- ( 2 x. ( 2 x. ( 7 / 4 ) ) ) = 7 |
149 |
148
|
oveq2i |
|- ( ; 1 0 x. ( 2 x. ( 2 x. ( 7 / 4 ) ) ) ) = ( ; 1 0 x. 7 ) |
150 |
144 149
|
eqtri |
|- ( ( ; 1 0 x. 2 ) x. ( 2 x. ( 7 / 4 ) ) ) = ( ; 1 0 x. 7 ) |
151 |
26
|
dec0u |
|- ( ; 1 0 x. 7 ) = ; 7 0 |
152 |
138 150 151
|
3eqtri |
|- ( ( 2 x. 4 ) _C 4 ) = ; 7 0 |
153 |
31 53 152
|
3brtr4i |
|- ( ( 4 ^ 4 ) / 4 ) < ( ( 2 x. 4 ) _C 4 ) |
154 |
|
4nn |
|- 4 e. NN |
155 |
|
eluznn |
|- ( ( 4 e. NN /\ n e. ( ZZ>= ` 4 ) ) -> n e. NN ) |
156 |
154 155
|
mpan |
|- ( n e. ( ZZ>= ` 4 ) -> n e. NN ) |
157 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
158 |
|
nnexpcl |
|- ( ( 4 e. NN /\ n e. NN0 ) -> ( 4 ^ n ) e. NN ) |
159 |
154 157 158
|
sylancr |
|- ( n e. NN -> ( 4 ^ n ) e. NN ) |
160 |
159
|
nnrpd |
|- ( n e. NN -> ( 4 ^ n ) e. RR+ ) |
161 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
162 |
160 161
|
rpdivcld |
|- ( n e. NN -> ( ( 4 ^ n ) / n ) e. RR+ ) |
163 |
162
|
rpred |
|- ( n e. NN -> ( ( 4 ^ n ) / n ) e. RR ) |
164 |
|
nnmulcl |
|- ( ( 2 e. NN /\ n e. NN ) -> ( 2 x. n ) e. NN ) |
165 |
117 164
|
mpan |
|- ( n e. NN -> ( 2 x. n ) e. NN ) |
166 |
165
|
nnnn0d |
|- ( n e. NN -> ( 2 x. n ) e. NN0 ) |
167 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
168 |
|
bccl |
|- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> ( ( 2 x. n ) _C n ) e. NN0 ) |
169 |
166 167 168
|
syl2anc |
|- ( n e. NN -> ( ( 2 x. n ) _C n ) e. NN0 ) |
170 |
169
|
nn0red |
|- ( n e. NN -> ( ( 2 x. n ) _C n ) e. RR ) |
171 |
|
2rp |
|- 2 e. RR+ |
172 |
165
|
peano2nnd |
|- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. NN ) |
173 |
172
|
nnrpd |
|- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. RR+ ) |
174 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
175 |
174
|
nnrpd |
|- ( n e. NN -> ( n + 1 ) e. RR+ ) |
176 |
173 175
|
rpdivcld |
|- ( n e. NN -> ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) e. RR+ ) |
177 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) e. RR+ ) -> ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) e. RR+ ) |
178 |
171 176 177
|
sylancr |
|- ( n e. NN -> ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) e. RR+ ) |
179 |
163 170 178
|
ltmul1d |
|- ( n e. NN -> ( ( ( 4 ^ n ) / n ) < ( ( 2 x. n ) _C n ) <-> ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) < ( ( ( 2 x. n ) _C n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) ) ) |
180 |
|
bcp1ctr |
|- ( n e. NN0 -> ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) = ( ( ( 2 x. n ) _C n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) ) |
181 |
157 180
|
syl |
|- ( n e. NN -> ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) = ( ( ( 2 x. n ) _C n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) ) |
182 |
181
|
breq2d |
|- ( n e. NN -> ( ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) < ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) <-> ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) < ( ( ( 2 x. n ) _C n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) ) ) |
183 |
179 182
|
bitr4d |
|- ( n e. NN -> ( ( ( 4 ^ n ) / n ) < ( ( 2 x. n ) _C n ) <-> ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) < ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) ) ) |
184 |
|
2re |
|- 2 e. RR |
185 |
184
|
a1i |
|- ( n e. NN -> 2 e. RR ) |
186 |
173 161
|
rpdivcld |
|- ( n e. NN -> ( ( ( 2 x. n ) + 1 ) / n ) e. RR+ ) |
187 |
186
|
rpred |
|- ( n e. NN -> ( ( ( 2 x. n ) + 1 ) / n ) e. RR ) |
188 |
|
nnmulcl |
|- ( ( ( 4 ^ n ) e. NN /\ 2 e. NN ) -> ( ( 4 ^ n ) x. 2 ) e. NN ) |
189 |
159 117 188
|
sylancl |
|- ( n e. NN -> ( ( 4 ^ n ) x. 2 ) e. NN ) |
190 |
189
|
nnrpd |
|- ( n e. NN -> ( ( 4 ^ n ) x. 2 ) e. RR+ ) |
191 |
190 175
|
rpdivcld |
|- ( n e. NN -> ( ( ( 4 ^ n ) x. 2 ) / ( n + 1 ) ) e. RR+ ) |
192 |
161
|
rpreccld |
|- ( n e. NN -> ( 1 / n ) e. RR+ ) |
193 |
|
ltaddrp |
|- ( ( 2 e. RR /\ ( 1 / n ) e. RR+ ) -> 2 < ( 2 + ( 1 / n ) ) ) |
194 |
184 192 193
|
sylancr |
|- ( n e. NN -> 2 < ( 2 + ( 1 / n ) ) ) |
195 |
165
|
nncnd |
|- ( n e. NN -> ( 2 x. n ) e. CC ) |
196 |
|
1cnd |
|- ( n e. NN -> 1 e. CC ) |
197 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
198 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
199 |
195 196 197 198
|
divdird |
|- ( n e. NN -> ( ( ( 2 x. n ) + 1 ) / n ) = ( ( ( 2 x. n ) / n ) + ( 1 / n ) ) ) |
200 |
32
|
a1i |
|- ( n e. NN -> 2 e. CC ) |
201 |
200 197 198
|
divcan4d |
|- ( n e. NN -> ( ( 2 x. n ) / n ) = 2 ) |
202 |
201
|
oveq1d |
|- ( n e. NN -> ( ( ( 2 x. n ) / n ) + ( 1 / n ) ) = ( 2 + ( 1 / n ) ) ) |
203 |
199 202
|
eqtr2d |
|- ( n e. NN -> ( 2 + ( 1 / n ) ) = ( ( ( 2 x. n ) + 1 ) / n ) ) |
204 |
194 203
|
breqtrd |
|- ( n e. NN -> 2 < ( ( ( 2 x. n ) + 1 ) / n ) ) |
205 |
185 187 191 204
|
ltmul2dd |
|- ( n e. NN -> ( ( ( ( 4 ^ n ) x. 2 ) / ( n + 1 ) ) x. 2 ) < ( ( ( ( 4 ^ n ) x. 2 ) / ( n + 1 ) ) x. ( ( ( 2 x. n ) + 1 ) / n ) ) ) |
206 |
|
expp1 |
|- ( ( 4 e. CC /\ n e. NN0 ) -> ( 4 ^ ( n + 1 ) ) = ( ( 4 ^ n ) x. 4 ) ) |
207 |
48 157 206
|
sylancr |
|- ( n e. NN -> ( 4 ^ ( n + 1 ) ) = ( ( 4 ^ n ) x. 4 ) ) |
208 |
159
|
nncnd |
|- ( n e. NN -> ( 4 ^ n ) e. CC ) |
209 |
208 200 200
|
mulassd |
|- ( n e. NN -> ( ( ( 4 ^ n ) x. 2 ) x. 2 ) = ( ( 4 ^ n ) x. ( 2 x. 2 ) ) ) |
210 |
103
|
oveq2i |
|- ( ( 4 ^ n ) x. ( 2 x. 2 ) ) = ( ( 4 ^ n ) x. 4 ) |
211 |
209 210
|
eqtrdi |
|- ( n e. NN -> ( ( ( 4 ^ n ) x. 2 ) x. 2 ) = ( ( 4 ^ n ) x. 4 ) ) |
212 |
207 211
|
eqtr4d |
|- ( n e. NN -> ( 4 ^ ( n + 1 ) ) = ( ( ( 4 ^ n ) x. 2 ) x. 2 ) ) |
213 |
212
|
oveq1d |
|- ( n e. NN -> ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) = ( ( ( ( 4 ^ n ) x. 2 ) x. 2 ) / ( n + 1 ) ) ) |
214 |
189
|
nncnd |
|- ( n e. NN -> ( ( 4 ^ n ) x. 2 ) e. CC ) |
215 |
174
|
nncnd |
|- ( n e. NN -> ( n + 1 ) e. CC ) |
216 |
174
|
nnne0d |
|- ( n e. NN -> ( n + 1 ) =/= 0 ) |
217 |
214 200 215 216
|
div23d |
|- ( n e. NN -> ( ( ( ( 4 ^ n ) x. 2 ) x. 2 ) / ( n + 1 ) ) = ( ( ( ( 4 ^ n ) x. 2 ) / ( n + 1 ) ) x. 2 ) ) |
218 |
213 217
|
eqtrd |
|- ( n e. NN -> ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) = ( ( ( ( 4 ^ n ) x. 2 ) / ( n + 1 ) ) x. 2 ) ) |
219 |
208 200 197 198
|
div23d |
|- ( n e. NN -> ( ( ( 4 ^ n ) x. 2 ) / n ) = ( ( ( 4 ^ n ) / n ) x. 2 ) ) |
220 |
219
|
oveq1d |
|- ( n e. NN -> ( ( ( ( 4 ^ n ) x. 2 ) / n ) x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) = ( ( ( ( 4 ^ n ) / n ) x. 2 ) x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) |
221 |
172
|
nncnd |
|- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. CC ) |
222 |
214 197 221 215 198 216
|
divmul24d |
|- ( n e. NN -> ( ( ( ( 4 ^ n ) x. 2 ) / n ) x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) = ( ( ( ( 4 ^ n ) x. 2 ) / ( n + 1 ) ) x. ( ( ( 2 x. n ) + 1 ) / n ) ) ) |
223 |
162
|
rpcnd |
|- ( n e. NN -> ( ( 4 ^ n ) / n ) e. CC ) |
224 |
176
|
rpcnd |
|- ( n e. NN -> ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) e. CC ) |
225 |
223 200 224
|
mulassd |
|- ( n e. NN -> ( ( ( ( 4 ^ n ) / n ) x. 2 ) x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) = ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) ) |
226 |
220 222 225
|
3eqtr3rd |
|- ( n e. NN -> ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) = ( ( ( ( 4 ^ n ) x. 2 ) / ( n + 1 ) ) x. ( ( ( 2 x. n ) + 1 ) / n ) ) ) |
227 |
205 218 226
|
3brtr4d |
|- ( n e. NN -> ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) < ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) ) |
228 |
174
|
nnnn0d |
|- ( n e. NN -> ( n + 1 ) e. NN0 ) |
229 |
|
nnexpcl |
|- ( ( 4 e. NN /\ ( n + 1 ) e. NN0 ) -> ( 4 ^ ( n + 1 ) ) e. NN ) |
230 |
154 228 229
|
sylancr |
|- ( n e. NN -> ( 4 ^ ( n + 1 ) ) e. NN ) |
231 |
230
|
nnrpd |
|- ( n e. NN -> ( 4 ^ ( n + 1 ) ) e. RR+ ) |
232 |
231 175
|
rpdivcld |
|- ( n e. NN -> ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) e. RR+ ) |
233 |
232
|
rpred |
|- ( n e. NN -> ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) e. RR ) |
234 |
178
|
rpred |
|- ( n e. NN -> ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) e. RR ) |
235 |
163 234
|
remulcld |
|- ( n e. NN -> ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) e. RR ) |
236 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ ( n + 1 ) e. NN0 ) -> ( 2 x. ( n + 1 ) ) e. NN0 ) |
237 |
33 228 236
|
sylancr |
|- ( n e. NN -> ( 2 x. ( n + 1 ) ) e. NN0 ) |
238 |
174
|
nnzd |
|- ( n e. NN -> ( n + 1 ) e. ZZ ) |
239 |
|
bccl |
|- ( ( ( 2 x. ( n + 1 ) ) e. NN0 /\ ( n + 1 ) e. ZZ ) -> ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) e. NN0 ) |
240 |
237 238 239
|
syl2anc |
|- ( n e. NN -> ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) e. NN0 ) |
241 |
240
|
nn0red |
|- ( n e. NN -> ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) e. RR ) |
242 |
|
lttr |
|- ( ( ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) e. RR /\ ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) e. RR /\ ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) e. RR ) -> ( ( ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) < ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) /\ ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) < ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) ) -> ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) < ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) ) ) |
243 |
233 235 241 242
|
syl3anc |
|- ( n e. NN -> ( ( ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) < ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) /\ ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) < ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) ) -> ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) < ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) ) ) |
244 |
227 243
|
mpand |
|- ( n e. NN -> ( ( ( ( 4 ^ n ) / n ) x. ( 2 x. ( ( ( 2 x. n ) + 1 ) / ( n + 1 ) ) ) ) < ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) -> ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) < ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) ) ) |
245 |
183 244
|
sylbid |
|- ( n e. NN -> ( ( ( 4 ^ n ) / n ) < ( ( 2 x. n ) _C n ) -> ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) < ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) ) ) |
246 |
156 245
|
syl |
|- ( n e. ( ZZ>= ` 4 ) -> ( ( ( 4 ^ n ) / n ) < ( ( 2 x. n ) _C n ) -> ( ( 4 ^ ( n + 1 ) ) / ( n + 1 ) ) < ( ( 2 x. ( n + 1 ) ) _C ( n + 1 ) ) ) ) |
247 |
6 12 18 24 153 246
|
uzind4i |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 4 ^ N ) / N ) < ( ( 2 x. N ) _C N ) ) |