| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzuz2 |  |-  ( K e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 2 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 3 | 1 2 | eleqtrrdi |  |-  ( K e. ( 1 ... N ) -> N e. NN ) | 
						
							| 4 | 3 | nnnn0d |  |-  ( K e. ( 1 ... N ) -> N e. NN0 ) | 
						
							| 5 | 4 | faccld |  |-  ( K e. ( 1 ... N ) -> ( ! ` N ) e. NN ) | 
						
							| 6 | 5 | nncnd |  |-  ( K e. ( 1 ... N ) -> ( ! ` N ) e. CC ) | 
						
							| 7 |  | fznn0sub |  |-  ( K e. ( 1 ... N ) -> ( N - K ) e. NN0 ) | 
						
							| 8 |  | nn0p1nn |  |-  ( ( N - K ) e. NN0 -> ( ( N - K ) + 1 ) e. NN ) | 
						
							| 9 | 7 8 | syl |  |-  ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. NN ) | 
						
							| 10 | 9 | nncnd |  |-  ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. CC ) | 
						
							| 11 | 9 | nnnn0d |  |-  ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. NN0 ) | 
						
							| 12 | 11 | faccld |  |-  ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) e. NN ) | 
						
							| 13 |  | elfznn |  |-  ( K e. ( 1 ... N ) -> K e. NN ) | 
						
							| 14 |  | nnm1nn0 |  |-  ( K e. NN -> ( K - 1 ) e. NN0 ) | 
						
							| 15 |  | faccl |  |-  ( ( K - 1 ) e. NN0 -> ( ! ` ( K - 1 ) ) e. NN ) | 
						
							| 16 | 13 14 15 | 3syl |  |-  ( K e. ( 1 ... N ) -> ( ! ` ( K - 1 ) ) e. NN ) | 
						
							| 17 | 12 16 | nnmulcld |  |-  ( K e. ( 1 ... N ) -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN ) | 
						
							| 18 |  | nncn |  |-  ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC ) | 
						
							| 19 |  | nnne0 |  |-  ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) | 
						
							| 20 | 18 19 | jca |  |-  ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) ) | 
						
							| 21 | 17 20 | syl |  |-  ( K e. ( 1 ... N ) -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) ) | 
						
							| 22 | 13 | nncnd |  |-  ( K e. ( 1 ... N ) -> K e. CC ) | 
						
							| 23 | 13 | nnne0d |  |-  ( K e. ( 1 ... N ) -> K =/= 0 ) | 
						
							| 24 | 22 23 | jca |  |-  ( K e. ( 1 ... N ) -> ( K e. CC /\ K =/= 0 ) ) | 
						
							| 25 |  | divmuldiv |  |-  ( ( ( ( ! ` N ) e. CC /\ ( ( N - K ) + 1 ) e. CC ) /\ ( ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) /\ ( K e. CC /\ K =/= 0 ) ) ) -> ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) | 
						
							| 26 | 6 10 21 24 25 | syl22anc |  |-  ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) | 
						
							| 27 |  | elfzel2 |  |-  ( K e. ( 1 ... N ) -> N e. ZZ ) | 
						
							| 28 | 27 | zcnd |  |-  ( K e. ( 1 ... N ) -> N e. CC ) | 
						
							| 29 |  | 1cnd |  |-  ( K e. ( 1 ... N ) -> 1 e. CC ) | 
						
							| 30 | 28 22 29 | subsubd |  |-  ( K e. ( 1 ... N ) -> ( N - ( K - 1 ) ) = ( ( N - K ) + 1 ) ) | 
						
							| 31 | 30 | fveq2d |  |-  ( K e. ( 1 ... N ) -> ( ! ` ( N - ( K - 1 ) ) ) = ( ! ` ( ( N - K ) + 1 ) ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( K e. ( 1 ... N ) -> ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( K e. ( 1 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) = ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) ) | 
						
							| 34 | 30 | oveq1d |  |-  ( K e. ( 1 ... N ) -> ( ( N - ( K - 1 ) ) / K ) = ( ( ( N - K ) + 1 ) / K ) ) | 
						
							| 35 | 33 34 | oveq12d |  |-  ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) ) | 
						
							| 36 |  | facp1 |  |-  ( ( N - K ) e. NN0 -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) | 
						
							| 37 | 7 36 | syl |  |-  ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) | 
						
							| 38 | 37 | eqcomd |  |-  ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) = ( ! ` ( ( N - K ) + 1 ) ) ) | 
						
							| 39 |  | facnn2 |  |-  ( K e. NN -> ( ! ` K ) = ( ( ! ` ( K - 1 ) ) x. K ) ) | 
						
							| 40 | 13 39 | syl |  |-  ( K e. ( 1 ... N ) -> ( ! ` K ) = ( ( ! ` ( K - 1 ) ) x. K ) ) | 
						
							| 41 | 38 40 | oveq12d |  |-  ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) x. ( ! ` K ) ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ( ! ` ( K - 1 ) ) x. K ) ) ) | 
						
							| 42 | 7 | faccld |  |-  ( K e. ( 1 ... N ) -> ( ! ` ( N - K ) ) e. NN ) | 
						
							| 43 | 42 | nncnd |  |-  ( K e. ( 1 ... N ) -> ( ! ` ( N - K ) ) e. CC ) | 
						
							| 44 | 13 | nnnn0d |  |-  ( K e. ( 1 ... N ) -> K e. NN0 ) | 
						
							| 45 | 44 | faccld |  |-  ( K e. ( 1 ... N ) -> ( ! ` K ) e. NN ) | 
						
							| 46 | 45 | nncnd |  |-  ( K e. ( 1 ... N ) -> ( ! ` K ) e. CC ) | 
						
							| 47 | 43 46 10 | mul32d |  |-  ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) x. ( ! ` K ) ) ) | 
						
							| 48 | 12 | nncnd |  |-  ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) e. CC ) | 
						
							| 49 | 16 | nncnd |  |-  ( K e. ( 1 ... N ) -> ( ! ` ( K - 1 ) ) e. CC ) | 
						
							| 50 | 48 49 22 | mulassd |  |-  ( K e. ( 1 ... N ) -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ( ! ` ( K - 1 ) ) x. K ) ) ) | 
						
							| 51 | 41 47 50 | 3eqtr4d |  |-  ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) | 
						
							| 53 | 26 35 52 | 3eqtr4d |  |-  ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) ) | 
						
							| 54 | 6 10 | mulcomd |  |-  ( K e. ( 1 ... N ) -> ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) = ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) ) | 
						
							| 55 | 42 45 | nnmulcld |  |-  ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) | 
						
							| 56 | 55 | nncnd |  |-  ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC ) | 
						
							| 57 | 56 10 | mulcomd |  |-  ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) | 
						
							| 58 | 54 57 | oveq12d |  |-  ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) = ( ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) / ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) | 
						
							| 59 | 55 | nnne0d |  |-  ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) | 
						
							| 60 | 9 | nnne0d |  |-  ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) =/= 0 ) | 
						
							| 61 | 6 56 10 59 60 | divcan5d |  |-  ( K e. ( 1 ... N ) -> ( ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) / ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) | 
						
							| 62 | 53 58 61 | 3eqtrrd |  |-  ( K e. ( 1 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) | 
						
							| 63 |  | fz1ssfz0 |  |-  ( 1 ... N ) C_ ( 0 ... N ) | 
						
							| 64 | 63 | sseli |  |-  ( K e. ( 1 ... N ) -> K e. ( 0 ... N ) ) | 
						
							| 65 |  | bcval2 |  |-  ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) | 
						
							| 66 | 64 65 | syl |  |-  ( K e. ( 1 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) | 
						
							| 67 |  | ax-1cn |  |-  1 e. CC | 
						
							| 68 |  | npcan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 69 | 28 67 68 | sylancl |  |-  ( K e. ( 1 ... N ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 70 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 71 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 72 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 73 | 27 70 71 72 | 4syl |  |-  ( K e. ( 1 ... N ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 74 | 69 73 | eqeltrrd |  |-  ( K e. ( 1 ... N ) -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 75 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) | 
						
							| 76 | 74 75 | syl |  |-  ( K e. ( 1 ... N ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) | 
						
							| 77 |  | elfzmlbm |  |-  ( K e. ( 1 ... N ) -> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 78 | 76 77 | sseldd |  |-  ( K e. ( 1 ... N ) -> ( K - 1 ) e. ( 0 ... N ) ) | 
						
							| 79 |  | bcval2 |  |-  ( ( K - 1 ) e. ( 0 ... N ) -> ( N _C ( K - 1 ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) ) | 
						
							| 80 | 78 79 | syl |  |-  ( K e. ( 1 ... N ) -> ( N _C ( K - 1 ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) ) | 
						
							| 81 | 80 | oveq1d |  |-  ( K e. ( 1 ... N ) -> ( ( N _C ( K - 1 ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) | 
						
							| 82 | 62 66 81 | 3eqtr4d |  |-  ( K e. ( 1 ... N ) -> ( N _C K ) = ( ( N _C ( K - 1 ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |