Step |
Hyp |
Ref |
Expression |
1 |
|
bcp1n |
|- ( K e. ( 0 ... ( N - 1 ) ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) ) |
2 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
3 |
2
|
zcnd |
|- ( N e. NN -> N e. CC ) |
4 |
3
|
adantl |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N e. CC ) |
5 |
|
1cnd |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> 1 e. CC ) |
6 |
4 5
|
npcand |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( N - 1 ) + 1 ) = N ) |
7 |
6
|
oveq1d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( N _C K ) ) |
8 |
6
|
oveq1d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) + 1 ) - K ) = ( N - K ) ) |
9 |
6 8
|
oveq12d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) = ( N / ( N - K ) ) ) |
10 |
9
|
oveq2d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) |
11 |
7 10
|
eqeq12d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( ( N - 1 ) + 1 ) _C K ) = ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) <-> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) ) |
12 |
1 11
|
syl5ib |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K e. ( 0 ... ( N - 1 ) ) -> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) ) |
13 |
12
|
3impia |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) |
14 |
13
|
3anidm13 |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) |
15 |
|
elfznn0 |
|- ( K e. ( 0 ... ( N - 1 ) ) -> K e. NN0 ) |
16 |
15
|
adantr |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K e. NN0 ) |
17 |
|
simpr |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N e. NN ) |
18 |
17
|
nnnn0d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N e. NN0 ) |
19 |
|
elfzelz |
|- ( K e. ( 0 ... ( N - 1 ) ) -> K e. ZZ ) |
20 |
19
|
adantr |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K e. ZZ ) |
21 |
20
|
zred |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K e. RR ) |
22 |
2
|
adantl |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N e. ZZ ) |
23 |
22
|
zred |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N e. RR ) |
24 |
|
elfzle2 |
|- ( K e. ( 0 ... ( N - 1 ) ) -> K <_ ( N - 1 ) ) |
25 |
24
|
adantr |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K <_ ( N - 1 ) ) |
26 |
|
zltlem1 |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( K < N <-> K <_ ( N - 1 ) ) ) |
27 |
19 2 26
|
syl2an |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K < N <-> K <_ ( N - 1 ) ) ) |
28 |
25 27
|
mpbird |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K < N ) |
29 |
21 23 28
|
ltled |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K <_ N ) |
30 |
|
elfz2nn0 |
|- ( K e. ( 0 ... N ) <-> ( K e. NN0 /\ N e. NN0 /\ K <_ N ) ) |
31 |
16 18 29 30
|
syl3anbrc |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K e. ( 0 ... N ) ) |
32 |
|
bcrpcl |
|- ( K e. ( 0 ... N ) -> ( N _C K ) e. RR+ ) |
33 |
31 32
|
syl |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N _C K ) e. RR+ ) |
34 |
33
|
rpcnd |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N _C K ) e. CC ) |
35 |
19
|
zcnd |
|- ( K e. ( 0 ... ( N - 1 ) ) -> K e. CC ) |
36 |
35
|
adantr |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K e. CC ) |
37 |
4 36
|
subcld |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N - K ) e. CC ) |
38 |
36 4
|
negsubdi2d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> -u ( K - N ) = ( N - K ) ) |
39 |
21 23
|
resubcld |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K - N ) e. RR ) |
40 |
39
|
recnd |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K - N ) e. CC ) |
41 |
4
|
addid2d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( 0 + N ) = N ) |
42 |
28 41
|
breqtrrd |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K < ( 0 + N ) ) |
43 |
|
0red |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> 0 e. RR ) |
44 |
21 23 43
|
ltsubaddd |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( K - N ) < 0 <-> K < ( 0 + N ) ) ) |
45 |
42 44
|
mpbird |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K - N ) < 0 ) |
46 |
45
|
lt0ne0d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K - N ) =/= 0 ) |
47 |
40 46
|
negne0d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> -u ( K - N ) =/= 0 ) |
48 |
38 47
|
eqnetrrd |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N - K ) =/= 0 ) |
49 |
4 37 48
|
divcld |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N / ( N - K ) ) e. CC ) |
50 |
|
bcrpcl |
|- ( K e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) _C K ) e. RR+ ) |
51 |
50
|
adantr |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( N - 1 ) _C K ) e. RR+ ) |
52 |
51
|
rpcnne0d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) _C K ) e. CC /\ ( ( N - 1 ) _C K ) =/= 0 ) ) |
53 |
|
divmul2 |
|- ( ( ( N _C K ) e. CC /\ ( N / ( N - K ) ) e. CC /\ ( ( ( N - 1 ) _C K ) e. CC /\ ( ( N - 1 ) _C K ) =/= 0 ) ) -> ( ( ( N _C K ) / ( ( N - 1 ) _C K ) ) = ( N / ( N - K ) ) <-> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) ) |
54 |
34 49 52 53
|
syl3anc |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N _C K ) / ( ( N - 1 ) _C K ) ) = ( N / ( N - K ) ) <-> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) ) |
55 |
14 54
|
mpbird |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( N _C K ) / ( ( N - 1 ) _C K ) ) = ( N / ( N - K ) ) ) |
56 |
55
|
oveq2d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( 1 / ( ( N _C K ) / ( ( N - 1 ) _C K ) ) ) = ( 1 / ( N / ( N - K ) ) ) ) |
57 |
51
|
rpcnd |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( N - 1 ) _C K ) e. CC ) |
58 |
|
bccl2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) e. NN ) |
59 |
31 58
|
syl |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N _C K ) e. NN ) |
60 |
59
|
nnne0d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N _C K ) =/= 0 ) |
61 |
|
bccl2 |
|- ( K e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) _C K ) e. NN ) |
62 |
61
|
nnne0d |
|- ( K e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) _C K ) =/= 0 ) |
63 |
62
|
adantr |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( N - 1 ) _C K ) =/= 0 ) |
64 |
34 57 60 63
|
recdivd |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( 1 / ( ( N _C K ) / ( ( N - 1 ) _C K ) ) ) = ( ( ( N - 1 ) _C K ) / ( N _C K ) ) ) |
65 |
17
|
nnne0d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N =/= 0 ) |
66 |
4 37 65 48
|
recdivd |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( 1 / ( N / ( N - K ) ) ) = ( ( N - K ) / N ) ) |
67 |
56 64 66
|
3eqtr3d |
|- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) _C K ) / ( N _C K ) ) = ( ( N - K ) / N ) ) |