| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
| 2 |
|
bcval2 |
|- ( 0 e. ( 0 ... N ) -> ( N _C 0 ) = ( ( ! ` N ) / ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) ) ) |
| 3 |
1 2
|
syl |
|- ( N e. NN0 -> ( N _C 0 ) = ( ( ! ` N ) / ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) ) ) |
| 4 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 5 |
4
|
subid1d |
|- ( N e. NN0 -> ( N - 0 ) = N ) |
| 6 |
5
|
fveq2d |
|- ( N e. NN0 -> ( ! ` ( N - 0 ) ) = ( ! ` N ) ) |
| 7 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
| 8 |
|
oveq12 |
|- ( ( ( ! ` ( N - 0 ) ) = ( ! ` N ) /\ ( ! ` 0 ) = 1 ) -> ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) = ( ( ! ` N ) x. 1 ) ) |
| 9 |
6 7 8
|
sylancl |
|- ( N e. NN0 -> ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) = ( ( ! ` N ) x. 1 ) ) |
| 10 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
| 11 |
10
|
nncnd |
|- ( N e. NN0 -> ( ! ` N ) e. CC ) |
| 12 |
11
|
mulridd |
|- ( N e. NN0 -> ( ( ! ` N ) x. 1 ) = ( ! ` N ) ) |
| 13 |
9 12
|
eqtrd |
|- ( N e. NN0 -> ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) = ( ! ` N ) ) |
| 14 |
13
|
oveq2d |
|- ( N e. NN0 -> ( ( ! ` N ) / ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) ) = ( ( ! ` N ) / ( ! ` N ) ) ) |
| 15 |
|
facne0 |
|- ( N e. NN0 -> ( ! ` N ) =/= 0 ) |
| 16 |
11 15
|
dividd |
|- ( N e. NN0 -> ( ( ! ` N ) / ( ! ` N ) ) = 1 ) |
| 17 |
14 16
|
eqtrd |
|- ( N e. NN0 -> ( ( ! ` N ) / ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) ) = 1 ) |
| 18 |
3 17
|
eqtrd |
|- ( N e. NN0 -> ( N _C 0 ) = 1 ) |