Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
2 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
3 |
2
|
a1i |
|- ( N e. NN -> 1 e. ( ZZ>= ` 0 ) ) |
4 |
|
elnnuz |
|- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
5 |
4
|
biimpi |
|- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
6 |
|
elfzuzb |
|- ( 1 e. ( 0 ... N ) <-> ( 1 e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` 1 ) ) ) |
7 |
3 5 6
|
sylanbrc |
|- ( N e. NN -> 1 e. ( 0 ... N ) ) |
8 |
|
bcval2 |
|- ( 1 e. ( 0 ... N ) -> ( N _C 1 ) = ( ( ! ` N ) / ( ( ! ` ( N - 1 ) ) x. ( ! ` 1 ) ) ) ) |
9 |
7 8
|
syl |
|- ( N e. NN -> ( N _C 1 ) = ( ( ! ` N ) / ( ( ! ` ( N - 1 ) ) x. ( ! ` 1 ) ) ) ) |
10 |
|
facnn2 |
|- ( N e. NN -> ( ! ` N ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |
11 |
|
fac1 |
|- ( ! ` 1 ) = 1 |
12 |
11
|
oveq2i |
|- ( ( ! ` ( N - 1 ) ) x. ( ! ` 1 ) ) = ( ( ! ` ( N - 1 ) ) x. 1 ) |
13 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
14 |
13
|
faccld |
|- ( N e. NN -> ( ! ` ( N - 1 ) ) e. NN ) |
15 |
14
|
nncnd |
|- ( N e. NN -> ( ! ` ( N - 1 ) ) e. CC ) |
16 |
15
|
mulid1d |
|- ( N e. NN -> ( ( ! ` ( N - 1 ) ) x. 1 ) = ( ! ` ( N - 1 ) ) ) |
17 |
12 16
|
eqtrid |
|- ( N e. NN -> ( ( ! ` ( N - 1 ) ) x. ( ! ` 1 ) ) = ( ! ` ( N - 1 ) ) ) |
18 |
10 17
|
oveq12d |
|- ( N e. NN -> ( ( ! ` N ) / ( ( ! ` ( N - 1 ) ) x. ( ! ` 1 ) ) ) = ( ( ( ! ` ( N - 1 ) ) x. N ) / ( ! ` ( N - 1 ) ) ) ) |
19 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
20 |
14
|
nnne0d |
|- ( N e. NN -> ( ! ` ( N - 1 ) ) =/= 0 ) |
21 |
19 15 20
|
divcan3d |
|- ( N e. NN -> ( ( ( ! ` ( N - 1 ) ) x. N ) / ( ! ` ( N - 1 ) ) ) = N ) |
22 |
9 18 21
|
3eqtrd |
|- ( N e. NN -> ( N _C 1 ) = N ) |
23 |
|
0nn0 |
|- 0 e. NN0 |
24 |
|
1z |
|- 1 e. ZZ |
25 |
|
0lt1 |
|- 0 < 1 |
26 |
25
|
olci |
|- ( 1 < 0 \/ 0 < 1 ) |
27 |
|
bcval4 |
|- ( ( 0 e. NN0 /\ 1 e. ZZ /\ ( 1 < 0 \/ 0 < 1 ) ) -> ( 0 _C 1 ) = 0 ) |
28 |
23 24 26 27
|
mp3an |
|- ( 0 _C 1 ) = 0 |
29 |
|
oveq1 |
|- ( N = 0 -> ( N _C 1 ) = ( 0 _C 1 ) ) |
30 |
|
eqeq12 |
|- ( ( ( N _C 1 ) = ( 0 _C 1 ) /\ N = 0 ) -> ( ( N _C 1 ) = N <-> ( 0 _C 1 ) = 0 ) ) |
31 |
29 30
|
mpancom |
|- ( N = 0 -> ( ( N _C 1 ) = N <-> ( 0 _C 1 ) = 0 ) ) |
32 |
28 31
|
mpbiri |
|- ( N = 0 -> ( N _C 1 ) = N ) |
33 |
22 32
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( N _C 1 ) = N ) |
34 |
1 33
|
sylbi |
|- ( N e. NN0 -> ( N _C 1 ) = N ) |