| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn |  |-  2 e. NN | 
						
							| 2 |  | bcval5 |  |-  ( ( N e. NN0 /\ 2 e. NN ) -> ( N _C 2 ) = ( ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) / ( ! ` 2 ) ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( N e. NN0 -> ( N _C 2 ) = ( ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) / ( ! ` 2 ) ) ) | 
						
							| 4 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 5 | 4 | oveq2i |  |-  ( ( N - 2 ) + ( 2 - 1 ) ) = ( ( N - 2 ) + 1 ) | 
						
							| 6 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 7 |  | 2cn |  |-  2 e. CC | 
						
							| 8 |  | ax-1cn |  |-  1 e. CC | 
						
							| 9 |  | npncan |  |-  ( ( N e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( N - 2 ) + ( 2 - 1 ) ) = ( N - 1 ) ) | 
						
							| 10 | 7 8 9 | mp3an23 |  |-  ( N e. CC -> ( ( N - 2 ) + ( 2 - 1 ) ) = ( N - 1 ) ) | 
						
							| 11 | 6 10 | syl |  |-  ( N e. NN0 -> ( ( N - 2 ) + ( 2 - 1 ) ) = ( N - 1 ) ) | 
						
							| 12 | 5 11 | eqtr3id |  |-  ( N e. NN0 -> ( ( N - 2 ) + 1 ) = ( N - 1 ) ) | 
						
							| 13 | 12 | seqeq1d |  |-  ( N e. NN0 -> seq ( ( N - 2 ) + 1 ) ( x. , _I ) = seq ( N - 1 ) ( x. , _I ) ) | 
						
							| 14 | 13 | fveq1d |  |-  ( N e. NN0 -> ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) = ( seq ( N - 1 ) ( x. , _I ) ` N ) ) | 
						
							| 15 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 16 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 17 | 15 16 | syl |  |-  ( N e. NN0 -> ( N - 1 ) e. ZZ ) | 
						
							| 18 |  | uzid |  |-  ( N e. ZZ -> N e. ( ZZ>= ` N ) ) | 
						
							| 19 | 15 18 | syl |  |-  ( N e. NN0 -> N e. ( ZZ>= ` N ) ) | 
						
							| 20 |  | npcan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 21 | 6 8 20 | sylancl |  |-  ( N e. NN0 -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 22 | 21 | fveq2d |  |-  ( N e. NN0 -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) = ( ZZ>= ` N ) ) | 
						
							| 23 | 19 22 | eleqtrrd |  |-  ( N e. NN0 -> N e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) | 
						
							| 24 |  | seqm1 |  |-  ( ( ( N - 1 ) e. ZZ /\ N e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) x. ( _I ` N ) ) ) | 
						
							| 25 | 17 23 24 | syl2anc |  |-  ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) x. ( _I ` N ) ) ) | 
						
							| 26 |  | seq1 |  |-  ( ( N - 1 ) e. ZZ -> ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) = ( _I ` ( N - 1 ) ) ) | 
						
							| 27 | 17 26 | syl |  |-  ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) = ( _I ` ( N - 1 ) ) ) | 
						
							| 28 |  | fvi |  |-  ( ( N - 1 ) e. ZZ -> ( _I ` ( N - 1 ) ) = ( N - 1 ) ) | 
						
							| 29 | 17 28 | syl |  |-  ( N e. NN0 -> ( _I ` ( N - 1 ) ) = ( N - 1 ) ) | 
						
							| 30 | 27 29 | eqtrd |  |-  ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) = ( N - 1 ) ) | 
						
							| 31 |  | fvi |  |-  ( N e. NN0 -> ( _I ` N ) = N ) | 
						
							| 32 | 30 31 | oveq12d |  |-  ( N e. NN0 -> ( ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) x. ( _I ` N ) ) = ( ( N - 1 ) x. N ) ) | 
						
							| 33 | 25 32 | eqtrd |  |-  ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( ( N - 1 ) x. N ) ) | 
						
							| 34 |  | subcl |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( N - 1 ) e. CC ) | 
						
							| 35 | 6 8 34 | sylancl |  |-  ( N e. NN0 -> ( N - 1 ) e. CC ) | 
						
							| 36 | 35 6 | mulcomd |  |-  ( N e. NN0 -> ( ( N - 1 ) x. N ) = ( N x. ( N - 1 ) ) ) | 
						
							| 37 | 33 36 | eqtrd |  |-  ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( N x. ( N - 1 ) ) ) | 
						
							| 38 | 14 37 | eqtrd |  |-  ( N e. NN0 -> ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) = ( N x. ( N - 1 ) ) ) | 
						
							| 39 |  | fac2 |  |-  ( ! ` 2 ) = 2 | 
						
							| 40 | 39 | a1i |  |-  ( N e. NN0 -> ( ! ` 2 ) = 2 ) | 
						
							| 41 | 38 40 | oveq12d |  |-  ( N e. NN0 -> ( ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) / ( ! ` 2 ) ) = ( ( N x. ( N - 1 ) ) / 2 ) ) | 
						
							| 42 | 3 41 | eqtrd |  |-  ( N e. NN0 -> ( N _C 2 ) = ( ( N x. ( N - 1 ) ) / 2 ) ) |