Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|- 2 e. NN |
2 |
|
bcval5 |
|- ( ( N e. NN0 /\ 2 e. NN ) -> ( N _C 2 ) = ( ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) / ( ! ` 2 ) ) ) |
3 |
1 2
|
mpan2 |
|- ( N e. NN0 -> ( N _C 2 ) = ( ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) / ( ! ` 2 ) ) ) |
4 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
5 |
4
|
oveq2i |
|- ( ( N - 2 ) + ( 2 - 1 ) ) = ( ( N - 2 ) + 1 ) |
6 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
7 |
|
2cn |
|- 2 e. CC |
8 |
|
ax-1cn |
|- 1 e. CC |
9 |
|
npncan |
|- ( ( N e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( N - 2 ) + ( 2 - 1 ) ) = ( N - 1 ) ) |
10 |
7 8 9
|
mp3an23 |
|- ( N e. CC -> ( ( N - 2 ) + ( 2 - 1 ) ) = ( N - 1 ) ) |
11 |
6 10
|
syl |
|- ( N e. NN0 -> ( ( N - 2 ) + ( 2 - 1 ) ) = ( N - 1 ) ) |
12 |
5 11
|
eqtr3id |
|- ( N e. NN0 -> ( ( N - 2 ) + 1 ) = ( N - 1 ) ) |
13 |
12
|
seqeq1d |
|- ( N e. NN0 -> seq ( ( N - 2 ) + 1 ) ( x. , _I ) = seq ( N - 1 ) ( x. , _I ) ) |
14 |
13
|
fveq1d |
|- ( N e. NN0 -> ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) = ( seq ( N - 1 ) ( x. , _I ) ` N ) ) |
15 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
16 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
17 |
15 16
|
syl |
|- ( N e. NN0 -> ( N - 1 ) e. ZZ ) |
18 |
|
uzid |
|- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
19 |
15 18
|
syl |
|- ( N e. NN0 -> N e. ( ZZ>= ` N ) ) |
20 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
21 |
6 8 20
|
sylancl |
|- ( N e. NN0 -> ( ( N - 1 ) + 1 ) = N ) |
22 |
21
|
fveq2d |
|- ( N e. NN0 -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) = ( ZZ>= ` N ) ) |
23 |
19 22
|
eleqtrrd |
|- ( N e. NN0 -> N e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
24 |
|
seqm1 |
|- ( ( ( N - 1 ) e. ZZ /\ N e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) x. ( _I ` N ) ) ) |
25 |
17 23 24
|
syl2anc |
|- ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) x. ( _I ` N ) ) ) |
26 |
|
seq1 |
|- ( ( N - 1 ) e. ZZ -> ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) = ( _I ` ( N - 1 ) ) ) |
27 |
17 26
|
syl |
|- ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) = ( _I ` ( N - 1 ) ) ) |
28 |
|
fvi |
|- ( ( N - 1 ) e. ZZ -> ( _I ` ( N - 1 ) ) = ( N - 1 ) ) |
29 |
17 28
|
syl |
|- ( N e. NN0 -> ( _I ` ( N - 1 ) ) = ( N - 1 ) ) |
30 |
27 29
|
eqtrd |
|- ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) = ( N - 1 ) ) |
31 |
|
fvi |
|- ( N e. NN0 -> ( _I ` N ) = N ) |
32 |
30 31
|
oveq12d |
|- ( N e. NN0 -> ( ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) x. ( _I ` N ) ) = ( ( N - 1 ) x. N ) ) |
33 |
25 32
|
eqtrd |
|- ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( ( N - 1 ) x. N ) ) |
34 |
|
subcl |
|- ( ( N e. CC /\ 1 e. CC ) -> ( N - 1 ) e. CC ) |
35 |
6 8 34
|
sylancl |
|- ( N e. NN0 -> ( N - 1 ) e. CC ) |
36 |
35 6
|
mulcomd |
|- ( N e. NN0 -> ( ( N - 1 ) x. N ) = ( N x. ( N - 1 ) ) ) |
37 |
33 36
|
eqtrd |
|- ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( N x. ( N - 1 ) ) ) |
38 |
14 37
|
eqtrd |
|- ( N e. NN0 -> ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) = ( N x. ( N - 1 ) ) ) |
39 |
|
fac2 |
|- ( ! ` 2 ) = 2 |
40 |
39
|
a1i |
|- ( N e. NN0 -> ( ! ` 2 ) = 2 ) |
41 |
38 40
|
oveq12d |
|- ( N e. NN0 -> ( ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) / ( ! ` 2 ) ) = ( ( N x. ( N - 1 ) ) / 2 ) ) |
42 |
3 41
|
eqtrd |
|- ( N e. NN0 -> ( N _C 2 ) = ( ( N x. ( N - 1 ) ) / 2 ) ) |