| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 2 |  | 2z |  |-  2 e. ZZ | 
						
							| 3 |  | bccl |  |-  ( ( N e. NN0 /\ 2 e. ZZ ) -> ( N _C 2 ) e. NN0 ) | 
						
							| 4 | 2 3 | mpan2 |  |-  ( N e. NN0 -> ( N _C 2 ) e. NN0 ) | 
						
							| 5 | 4 | nn0cnd |  |-  ( N e. NN0 -> ( N _C 2 ) e. CC ) | 
						
							| 6 | 1 5 | addcomd |  |-  ( N e. NN0 -> ( N + ( N _C 2 ) ) = ( ( N _C 2 ) + N ) ) | 
						
							| 7 |  | bcn1 |  |-  ( N e. NN0 -> ( N _C 1 ) = N ) | 
						
							| 8 |  | 1e2m1 |  |-  1 = ( 2 - 1 ) | 
						
							| 9 | 8 | a1i |  |-  ( N e. NN0 -> 1 = ( 2 - 1 ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( N e. NN0 -> ( N _C 1 ) = ( N _C ( 2 - 1 ) ) ) | 
						
							| 11 | 7 10 | eqtr3d |  |-  ( N e. NN0 -> N = ( N _C ( 2 - 1 ) ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( N e. NN0 -> ( ( N _C 2 ) + N ) = ( ( N _C 2 ) + ( N _C ( 2 - 1 ) ) ) ) | 
						
							| 13 |  | bcpasc |  |-  ( ( N e. NN0 /\ 2 e. ZZ ) -> ( ( N _C 2 ) + ( N _C ( 2 - 1 ) ) ) = ( ( N + 1 ) _C 2 ) ) | 
						
							| 14 | 2 13 | mpan2 |  |-  ( N e. NN0 -> ( ( N _C 2 ) + ( N _C ( 2 - 1 ) ) ) = ( ( N + 1 ) _C 2 ) ) | 
						
							| 15 | 6 12 14 | 3eqtrd |  |-  ( N e. NN0 -> ( N + ( N _C 2 ) ) = ( ( N + 1 ) _C 2 ) ) |