Metamath Proof Explorer


Theorem bcnm1

Description: The binomial coefficent of ( N - 1 ) is N . (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Assertion bcnm1
|- ( N e. NN0 -> ( N _C ( N - 1 ) ) = N )

Proof

Step Hyp Ref Expression
1 1z
 |-  1 e. ZZ
2 bccmpl
 |-  ( ( N e. NN0 /\ 1 e. ZZ ) -> ( N _C 1 ) = ( N _C ( N - 1 ) ) )
3 1 2 mpan2
 |-  ( N e. NN0 -> ( N _C 1 ) = ( N _C ( N - 1 ) ) )
4 bcn1
 |-  ( N e. NN0 -> ( N _C 1 ) = N )
5 3 4 eqtr3d
 |-  ( N e. NN0 -> ( N _C ( N - 1 ) ) = N )