| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 2 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 3 |  | bccmpl |  |-  ( ( ( N + 1 ) e. NN0 /\ N e. ZZ ) -> ( ( N + 1 ) _C N ) = ( ( N + 1 ) _C ( ( N + 1 ) - N ) ) ) | 
						
							| 4 | 1 2 3 | syl2anc |  |-  ( N e. NN0 -> ( ( N + 1 ) _C N ) = ( ( N + 1 ) _C ( ( N + 1 ) - N ) ) ) | 
						
							| 5 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 6 |  | ax-1cn |  |-  1 e. CC | 
						
							| 7 |  | pncan2 |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - N ) = 1 ) | 
						
							| 8 | 5 6 7 | sylancl |  |-  ( N e. NN0 -> ( ( N + 1 ) - N ) = 1 ) | 
						
							| 9 | 8 | oveq2d |  |-  ( N e. NN0 -> ( ( N + 1 ) _C ( ( N + 1 ) - N ) ) = ( ( N + 1 ) _C 1 ) ) | 
						
							| 10 |  | bcn1 |  |-  ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) _C 1 ) = ( N + 1 ) ) | 
						
							| 11 | 1 10 | syl |  |-  ( N e. NN0 -> ( ( N + 1 ) _C 1 ) = ( N + 1 ) ) | 
						
							| 12 | 4 9 11 | 3eqtrd |  |-  ( N e. NN0 -> ( ( N + 1 ) _C N ) = ( N + 1 ) ) |