| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2t1e2 | 
							 |-  ( 2 x. 1 ) = 2  | 
						
						
							| 2 | 
							
								
							 | 
							df-2 | 
							 |-  2 = ( 1 + 1 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							eqtri | 
							 |-  ( 2 x. 1 ) = ( 1 + 1 )  | 
						
						
							| 4 | 
							
								3
							 | 
							oveq2i | 
							 |-  ( ( 2 x. N ) + ( 2 x. 1 ) ) = ( ( 2 x. N ) + ( 1 + 1 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							nn0cn | 
							 |-  ( N e. NN0 -> N e. CC )  | 
						
						
							| 6 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 7 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 8 | 
							
								
							 | 
							adddi | 
							 |-  ( ( 2 e. CC /\ N e. CC /\ 1 e. CC ) -> ( 2 x. ( N + 1 ) ) = ( ( 2 x. N ) + ( 2 x. 1 ) ) )  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							mp3an13 | 
							 |-  ( N e. CC -> ( 2 x. ( N + 1 ) ) = ( ( 2 x. N ) + ( 2 x. 1 ) ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							syl | 
							 |-  ( N e. NN0 -> ( 2 x. ( N + 1 ) ) = ( ( 2 x. N ) + ( 2 x. 1 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							2nn0 | 
							 |-  2 e. NN0  | 
						
						
							| 12 | 
							
								
							 | 
							nn0mulcl | 
							 |-  ( ( 2 e. NN0 /\ N e. NN0 ) -> ( 2 x. N ) e. NN0 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							mpan | 
							 |-  ( N e. NN0 -> ( 2 x. N ) e. NN0 )  | 
						
						
							| 14 | 
							
								13
							 | 
							nn0cnd | 
							 |-  ( N e. NN0 -> ( 2 x. N ) e. CC )  | 
						
						
							| 15 | 
							
								
							 | 
							addass | 
							 |-  ( ( ( 2 x. N ) e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( ( 2 x. N ) + 1 ) + 1 ) = ( ( 2 x. N ) + ( 1 + 1 ) ) )  | 
						
						
							| 16 | 
							
								7 7 15
							 | 
							mp3an23 | 
							 |-  ( ( 2 x. N ) e. CC -> ( ( ( 2 x. N ) + 1 ) + 1 ) = ( ( 2 x. N ) + ( 1 + 1 ) ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							syl | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) + 1 ) = ( ( 2 x. N ) + ( 1 + 1 ) ) )  | 
						
						
							| 18 | 
							
								4 10 17
							 | 
							3eqtr4a | 
							 |-  ( N e. NN0 -> ( 2 x. ( N + 1 ) ) = ( ( ( 2 x. N ) + 1 ) + 1 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq1d | 
							 |-  ( N e. NN0 -> ( ( 2 x. ( N + 1 ) ) _C ( N + 1 ) ) = ( ( ( ( 2 x. N ) + 1 ) + 1 ) _C ( N + 1 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							peano2nn0 | 
							 |-  ( ( 2 x. N ) e. NN0 -> ( ( 2 x. N ) + 1 ) e. NN0 )  | 
						
						
							| 21 | 
							
								13 20
							 | 
							syl | 
							 |-  ( N e. NN0 -> ( ( 2 x. N ) + 1 ) e. NN0 )  | 
						
						
							| 22 | 
							
								
							 | 
							nn0p1nn | 
							 |-  ( N e. NN0 -> ( N + 1 ) e. NN )  | 
						
						
							| 23 | 
							
								22
							 | 
							nnzd | 
							 |-  ( N e. NN0 -> ( N + 1 ) e. ZZ )  | 
						
						
							| 24 | 
							
								
							 | 
							bcpasc | 
							 |-  ( ( ( ( 2 x. N ) + 1 ) e. NN0 /\ ( N + 1 ) e. ZZ ) -> ( ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) + ( ( ( 2 x. N ) + 1 ) _C ( ( N + 1 ) - 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) + 1 ) _C ( N + 1 ) ) )  | 
						
						
							| 25 | 
							
								21 23 24
							 | 
							syl2anc | 
							 |-  ( N e. NN0 -> ( ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) + ( ( ( 2 x. N ) + 1 ) _C ( ( N + 1 ) - 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) + 1 ) _C ( N + 1 ) ) )  | 
						
						
							| 26 | 
							
								19 25
							 | 
							eqtr4d | 
							 |-  ( N e. NN0 -> ( ( 2 x. ( N + 1 ) ) _C ( N + 1 ) ) = ( ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) + ( ( ( 2 x. N ) + 1 ) _C ( ( N + 1 ) - 1 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							nn0z | 
							 |-  ( N e. NN0 -> N e. ZZ )  | 
						
						
							| 28 | 
							
								
							 | 
							bccl | 
							 |-  ( ( ( 2 x. N ) e. NN0 /\ N e. ZZ ) -> ( ( 2 x. N ) _C N ) e. NN0 )  | 
						
						
							| 29 | 
							
								13 27 28
							 | 
							syl2anc | 
							 |-  ( N e. NN0 -> ( ( 2 x. N ) _C N ) e. NN0 )  | 
						
						
							| 30 | 
							
								29
							 | 
							nn0cnd | 
							 |-  ( N e. NN0 -> ( ( 2 x. N ) _C N ) e. CC )  | 
						
						
							| 31 | 
							
								
							 | 
							2cnd | 
							 |-  ( N e. NN0 -> 2 e. CC )  | 
						
						
							| 32 | 
							
								21
							 | 
							nn0red | 
							 |-  ( N e. NN0 -> ( ( 2 x. N ) + 1 ) e. RR )  | 
						
						
							| 33 | 
							
								32 22
							 | 
							nndivred | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) / ( N + 1 ) ) e. RR )  | 
						
						
							| 34 | 
							
								33
							 | 
							recnd | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) / ( N + 1 ) ) e. CC )  | 
						
						
							| 35 | 
							
								30 31 34
							 | 
							mul12d | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) _C N ) x. ( 2 x. ( ( ( 2 x. N ) + 1 ) / ( N + 1 ) ) ) ) = ( 2 x. ( ( ( 2 x. N ) _C N ) x. ( ( ( 2 x. N ) + 1 ) / ( N + 1 ) ) ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							1cnd | 
							 |-  ( N e. NN0 -> 1 e. CC )  | 
						
						
							| 37 | 
							
								14 36 5
							 | 
							addsubd | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) - N ) = ( ( ( 2 x. N ) - N ) + 1 ) )  | 
						
						
							| 38 | 
							
								5
							 | 
							2timesd | 
							 |-  ( N e. NN0 -> ( 2 x. N ) = ( N + N ) )  | 
						
						
							| 39 | 
							
								5 5 38
							 | 
							mvrladdd | 
							 |-  ( N e. NN0 -> ( ( 2 x. N ) - N ) = N )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveq1d | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) - N ) + 1 ) = ( N + 1 ) )  | 
						
						
							| 41 | 
							
								37 40
							 | 
							eqtr2d | 
							 |-  ( N e. NN0 -> ( N + 1 ) = ( ( ( 2 x. N ) + 1 ) - N ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							oveq2d | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) / ( N + 1 ) ) = ( ( ( 2 x. N ) + 1 ) / ( ( ( 2 x. N ) + 1 ) - N ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							oveq2d | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) _C N ) x. ( ( ( 2 x. N ) + 1 ) / ( N + 1 ) ) ) = ( ( ( 2 x. N ) _C N ) x. ( ( ( 2 x. N ) + 1 ) / ( ( ( 2 x. N ) + 1 ) - N ) ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							fzctr | 
							 |-  ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							bcp1n | 
							 |-  ( N e. ( 0 ... ( 2 x. N ) ) -> ( ( ( 2 x. N ) + 1 ) _C N ) = ( ( ( 2 x. N ) _C N ) x. ( ( ( 2 x. N ) + 1 ) / ( ( ( 2 x. N ) + 1 ) - N ) ) ) )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							syl | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) _C N ) = ( ( ( 2 x. N ) _C N ) x. ( ( ( 2 x. N ) + 1 ) / ( ( ( 2 x. N ) + 1 ) - N ) ) ) )  | 
						
						
							| 47 | 
							
								43 46
							 | 
							eqtr4d | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) _C N ) x. ( ( ( 2 x. N ) + 1 ) / ( N + 1 ) ) ) = ( ( ( 2 x. N ) + 1 ) _C N ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							oveq2d | 
							 |-  ( N e. NN0 -> ( 2 x. ( ( ( 2 x. N ) _C N ) x. ( ( ( 2 x. N ) + 1 ) / ( N + 1 ) ) ) ) = ( 2 x. ( ( ( 2 x. N ) + 1 ) _C N ) ) )  | 
						
						
							| 49 | 
							
								35 48
							 | 
							eqtrd | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) _C N ) x. ( 2 x. ( ( ( 2 x. N ) + 1 ) / ( N + 1 ) ) ) ) = ( 2 x. ( ( ( 2 x. N ) + 1 ) _C N ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							bccmpl | 
							 |-  ( ( ( ( 2 x. N ) + 1 ) e. NN0 /\ ( N + 1 ) e. ZZ ) -> ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) = ( ( ( 2 x. N ) + 1 ) _C ( ( ( 2 x. N ) + 1 ) - ( N + 1 ) ) ) )  | 
						
						
							| 51 | 
							
								21 23 50
							 | 
							syl2anc | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) = ( ( ( 2 x. N ) + 1 ) _C ( ( ( 2 x. N ) + 1 ) - ( N + 1 ) ) ) )  | 
						
						
							| 52 | 
							
								22
							 | 
							nncnd | 
							 |-  ( N e. NN0 -> ( N + 1 ) e. CC )  | 
						
						
							| 53 | 
							
								38
							 | 
							oveq1d | 
							 |-  ( N e. NN0 -> ( ( 2 x. N ) + 1 ) = ( ( N + N ) + 1 ) )  | 
						
						
							| 54 | 
							
								5 5 36
							 | 
							addassd | 
							 |-  ( N e. NN0 -> ( ( N + N ) + 1 ) = ( N + ( N + 1 ) ) )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							eqtrd | 
							 |-  ( N e. NN0 -> ( ( 2 x. N ) + 1 ) = ( N + ( N + 1 ) ) )  | 
						
						
							| 56 | 
							
								5 52 55
							 | 
							mvrraddd | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) - ( N + 1 ) ) = N )  | 
						
						
							| 57 | 
							
								56
							 | 
							oveq2d | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) _C ( ( ( 2 x. N ) + 1 ) - ( N + 1 ) ) ) = ( ( ( 2 x. N ) + 1 ) _C N ) )  | 
						
						
							| 58 | 
							
								51 57
							 | 
							eqtrd | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) = ( ( ( 2 x. N ) + 1 ) _C N ) )  | 
						
						
							| 59 | 
							
								
							 | 
							pncan | 
							 |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N )  | 
						
						
							| 60 | 
							
								5 7 59
							 | 
							sylancl | 
							 |-  ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N )  | 
						
						
							| 61 | 
							
								60
							 | 
							oveq2d | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) _C ( ( N + 1 ) - 1 ) ) = ( ( ( 2 x. N ) + 1 ) _C N ) )  | 
						
						
							| 62 | 
							
								58 61
							 | 
							oveq12d | 
							 |-  ( N e. NN0 -> ( ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) + ( ( ( 2 x. N ) + 1 ) _C ( ( N + 1 ) - 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) _C N ) + ( ( ( 2 x. N ) + 1 ) _C N ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							bccl | 
							 |-  ( ( ( ( 2 x. N ) + 1 ) e. NN0 /\ N e. ZZ ) -> ( ( ( 2 x. N ) + 1 ) _C N ) e. NN0 )  | 
						
						
							| 64 | 
							
								21 27 63
							 | 
							syl2anc | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) _C N ) e. NN0 )  | 
						
						
							| 65 | 
							
								64
							 | 
							nn0cnd | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) _C N ) e. CC )  | 
						
						
							| 66 | 
							
								65
							 | 
							2timesd | 
							 |-  ( N e. NN0 -> ( 2 x. ( ( ( 2 x. N ) + 1 ) _C N ) ) = ( ( ( ( 2 x. N ) + 1 ) _C N ) + ( ( ( 2 x. N ) + 1 ) _C N ) ) )  | 
						
						
							| 67 | 
							
								62 66
							 | 
							eqtr4d | 
							 |-  ( N e. NN0 -> ( ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) + ( ( ( 2 x. N ) + 1 ) _C ( ( N + 1 ) - 1 ) ) ) = ( 2 x. ( ( ( 2 x. N ) + 1 ) _C N ) ) )  | 
						
						
							| 68 | 
							
								49 67
							 | 
							eqtr4d | 
							 |-  ( N e. NN0 -> ( ( ( 2 x. N ) _C N ) x. ( 2 x. ( ( ( 2 x. N ) + 1 ) / ( N + 1 ) ) ) ) = ( ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) + ( ( ( 2 x. N ) + 1 ) _C ( ( N + 1 ) - 1 ) ) ) )  | 
						
						
							| 69 | 
							
								26 68
							 | 
							eqtr4d | 
							 |-  ( N e. NN0 -> ( ( 2 x. ( N + 1 ) ) _C ( N + 1 ) ) = ( ( ( 2 x. N ) _C N ) x. ( 2 x. ( ( ( 2 x. N ) + 1 ) / ( N + 1 ) ) ) ) )  |