| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 2 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 3 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 4 | 2 3 | syl |  |-  ( N e. NN0 -> ( N - 1 ) e. ZZ ) | 
						
							| 5 |  | bccmpl |  |-  ( ( ( N + 1 ) e. NN0 /\ ( N - 1 ) e. ZZ ) -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( N + 1 ) _C ( ( N + 1 ) - ( N - 1 ) ) ) ) | 
						
							| 6 | 1 4 5 | syl2anc |  |-  ( N e. NN0 -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( N + 1 ) _C ( ( N + 1 ) - ( N - 1 ) ) ) ) | 
						
							| 7 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 8 |  | 1cnd |  |-  ( N e. NN0 -> 1 e. CC ) | 
						
							| 9 | 7 8 8 | pnncand |  |-  ( N e. NN0 -> ( ( N + 1 ) - ( N - 1 ) ) = ( 1 + 1 ) ) | 
						
							| 10 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 11 | 9 10 | eqtr4di |  |-  ( N e. NN0 -> ( ( N + 1 ) - ( N - 1 ) ) = 2 ) | 
						
							| 12 | 11 | oveq2d |  |-  ( N e. NN0 -> ( ( N + 1 ) _C ( ( N + 1 ) - ( N - 1 ) ) ) = ( ( N + 1 ) _C 2 ) ) | 
						
							| 13 |  | bcn2 |  |-  ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) _C 2 ) = ( ( ( N + 1 ) x. ( ( N + 1 ) - 1 ) ) / 2 ) ) | 
						
							| 14 | 1 13 | syl |  |-  ( N e. NN0 -> ( ( N + 1 ) _C 2 ) = ( ( ( N + 1 ) x. ( ( N + 1 ) - 1 ) ) / 2 ) ) | 
						
							| 15 |  | ax-1cn |  |-  1 e. CC | 
						
							| 16 |  | pncan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 17 | 7 15 16 | sylancl |  |-  ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 18 | 17 | oveq2d |  |-  ( N e. NN0 -> ( ( N + 1 ) x. ( ( N + 1 ) - 1 ) ) = ( ( N + 1 ) x. N ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( N e. NN0 -> ( ( ( N + 1 ) x. ( ( N + 1 ) - 1 ) ) / 2 ) = ( ( ( N + 1 ) x. N ) / 2 ) ) | 
						
							| 20 | 14 19 | eqtrd |  |-  ( N e. NN0 -> ( ( N + 1 ) _C 2 ) = ( ( ( N + 1 ) x. N ) / 2 ) ) | 
						
							| 21 | 12 20 | eqtrd |  |-  ( N e. NN0 -> ( ( N + 1 ) _C ( ( N + 1 ) - ( N - 1 ) ) ) = ( ( ( N + 1 ) x. N ) / 2 ) ) | 
						
							| 22 | 6 21 | eqtrd |  |-  ( N e. NN0 -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |