| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzel1 |  |-  ( K e. ( 0 ... N ) -> 0 e. ZZ ) | 
						
							| 2 |  | elfzel2 |  |-  ( K e. ( 0 ... N ) -> N e. ZZ ) | 
						
							| 3 |  | elfzelz |  |-  ( K e. ( 0 ... N ) -> K e. ZZ ) | 
						
							| 4 |  | 1zzd |  |-  ( K e. ( 0 ... N ) -> 1 e. ZZ ) | 
						
							| 5 |  | fzaddel |  |-  ( ( ( 0 e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ 1 e. ZZ ) ) -> ( K e. ( 0 ... N ) <-> ( K + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) | 
						
							| 6 | 1 2 3 4 5 | syl22anc |  |-  ( K e. ( 0 ... N ) -> ( K e. ( 0 ... N ) <-> ( K + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) | 
						
							| 7 | 6 | ibi |  |-  ( K e. ( 0 ... N ) -> ( K + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) | 
						
							| 8 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 9 | 8 | oveq1i |  |-  ( 1 ... ( N + 1 ) ) = ( ( 0 + 1 ) ... ( N + 1 ) ) | 
						
							| 10 | 7 9 | eleqtrrdi |  |-  ( K e. ( 0 ... N ) -> ( K + 1 ) e. ( 1 ... ( N + 1 ) ) ) | 
						
							| 11 |  | bcm1k |  |-  ( ( K + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( ( N + 1 ) _C ( K + 1 ) ) = ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( K + 1 ) ) = ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) ) | 
						
							| 13 | 3 | zcnd |  |-  ( K e. ( 0 ... N ) -> K e. CC ) | 
						
							| 14 |  | ax-1cn |  |-  1 e. CC | 
						
							| 15 |  | pncan |  |-  ( ( K e. CC /\ 1 e. CC ) -> ( ( K + 1 ) - 1 ) = K ) | 
						
							| 16 | 13 14 15 | sylancl |  |-  ( K e. ( 0 ... N ) -> ( ( K + 1 ) - 1 ) = K ) | 
						
							| 17 | 16 | oveq2d |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) = ( ( N + 1 ) _C K ) ) | 
						
							| 18 |  | bcp1n |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C K ) = ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) | 
						
							| 19 | 17 18 | eqtrd |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) | 
						
							| 20 | 16 | oveq2d |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) = ( ( N + 1 ) - K ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) = ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) | 
						
							| 22 | 19 21 | oveq12d |  |-  ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) = ( ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) ) | 
						
							| 23 |  | bcrpcl |  |-  ( K e. ( 0 ... N ) -> ( N _C K ) e. RR+ ) | 
						
							| 24 | 23 | rpcnd |  |-  ( K e. ( 0 ... N ) -> ( N _C K ) e. CC ) | 
						
							| 25 | 2 | peano2zd |  |-  ( K e. ( 0 ... N ) -> ( N + 1 ) e. ZZ ) | 
						
							| 26 | 25 | zred |  |-  ( K e. ( 0 ... N ) -> ( N + 1 ) e. RR ) | 
						
							| 27 | 3 | zred |  |-  ( K e. ( 0 ... N ) -> K e. RR ) | 
						
							| 28 | 2 | zred |  |-  ( K e. ( 0 ... N ) -> N e. RR ) | 
						
							| 29 |  | elfzle2 |  |-  ( K e. ( 0 ... N ) -> K <_ N ) | 
						
							| 30 | 28 | ltp1d |  |-  ( K e. ( 0 ... N ) -> N < ( N + 1 ) ) | 
						
							| 31 | 27 28 26 29 30 | lelttrd |  |-  ( K e. ( 0 ... N ) -> K < ( N + 1 ) ) | 
						
							| 32 |  | znnsub |  |-  ( ( K e. ZZ /\ ( N + 1 ) e. ZZ ) -> ( K < ( N + 1 ) <-> ( ( N + 1 ) - K ) e. NN ) ) | 
						
							| 33 | 3 25 32 | syl2anc |  |-  ( K e. ( 0 ... N ) -> ( K < ( N + 1 ) <-> ( ( N + 1 ) - K ) e. NN ) ) | 
						
							| 34 | 31 33 | mpbid |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. NN ) | 
						
							| 35 | 26 34 | nndivred |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) / ( ( N + 1 ) - K ) ) e. RR ) | 
						
							| 36 | 35 | recnd |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) / ( ( N + 1 ) - K ) ) e. CC ) | 
						
							| 37 | 34 | nnred |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. RR ) | 
						
							| 38 |  | elfznn0 |  |-  ( K e. ( 0 ... N ) -> K e. NN0 ) | 
						
							| 39 |  | nn0p1nn |  |-  ( K e. NN0 -> ( K + 1 ) e. NN ) | 
						
							| 40 | 38 39 | syl |  |-  ( K e. ( 0 ... N ) -> ( K + 1 ) e. NN ) | 
						
							| 41 | 37 40 | nndivred |  |-  ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) - K ) / ( K + 1 ) ) e. RR ) | 
						
							| 42 | 41 | recnd |  |-  ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) - K ) / ( K + 1 ) ) e. CC ) | 
						
							| 43 | 24 36 42 | mulassd |  |-  ( K e. ( 0 ... N ) -> ( ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) = ( ( N _C K ) x. ( ( ( N + 1 ) / ( ( N + 1 ) - K ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) ) ) | 
						
							| 44 | 25 | zcnd |  |-  ( K e. ( 0 ... N ) -> ( N + 1 ) e. CC ) | 
						
							| 45 | 34 | nncnd |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. CC ) | 
						
							| 46 | 40 | nncnd |  |-  ( K e. ( 0 ... N ) -> ( K + 1 ) e. CC ) | 
						
							| 47 | 34 | nnne0d |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) =/= 0 ) | 
						
							| 48 | 40 | nnne0d |  |-  ( K e. ( 0 ... N ) -> ( K + 1 ) =/= 0 ) | 
						
							| 49 | 44 45 46 47 48 | dmdcan2d |  |-  ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) / ( ( N + 1 ) - K ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) = ( ( N + 1 ) / ( K + 1 ) ) ) | 
						
							| 50 | 49 | oveq2d |  |-  ( K e. ( 0 ... N ) -> ( ( N _C K ) x. ( ( ( N + 1 ) / ( ( N + 1 ) - K ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) | 
						
							| 51 | 43 50 | eqtrd |  |-  ( K e. ( 0 ... N ) -> ( ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) | 
						
							| 52 | 22 51 | eqtrd |  |-  ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) | 
						
							| 53 | 12 52 | eqtrd |  |-  ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( K + 1 ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) |