Step |
Hyp |
Ref |
Expression |
1 |
|
elfzel1 |
|- ( K e. ( 0 ... N ) -> 0 e. ZZ ) |
2 |
|
elfzel2 |
|- ( K e. ( 0 ... N ) -> N e. ZZ ) |
3 |
|
elfzelz |
|- ( K e. ( 0 ... N ) -> K e. ZZ ) |
4 |
|
1zzd |
|- ( K e. ( 0 ... N ) -> 1 e. ZZ ) |
5 |
|
fzaddel |
|- ( ( ( 0 e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ 1 e. ZZ ) ) -> ( K e. ( 0 ... N ) <-> ( K + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
6 |
1 2 3 4 5
|
syl22anc |
|- ( K e. ( 0 ... N ) -> ( K e. ( 0 ... N ) <-> ( K + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
7 |
6
|
ibi |
|- ( K e. ( 0 ... N ) -> ( K + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) |
8 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
9 |
8
|
oveq1i |
|- ( 1 ... ( N + 1 ) ) = ( ( 0 + 1 ) ... ( N + 1 ) ) |
10 |
7 9
|
eleqtrrdi |
|- ( K e. ( 0 ... N ) -> ( K + 1 ) e. ( 1 ... ( N + 1 ) ) ) |
11 |
|
bcm1k |
|- ( ( K + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( ( N + 1 ) _C ( K + 1 ) ) = ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) ) |
12 |
10 11
|
syl |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( K + 1 ) ) = ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) ) |
13 |
3
|
zcnd |
|- ( K e. ( 0 ... N ) -> K e. CC ) |
14 |
|
ax-1cn |
|- 1 e. CC |
15 |
|
pncan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K + 1 ) - 1 ) = K ) |
16 |
13 14 15
|
sylancl |
|- ( K e. ( 0 ... N ) -> ( ( K + 1 ) - 1 ) = K ) |
17 |
16
|
oveq2d |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) = ( ( N + 1 ) _C K ) ) |
18 |
|
bcp1n |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C K ) = ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |
19 |
17 18
|
eqtrd |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |
20 |
16
|
oveq2d |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) = ( ( N + 1 ) - K ) ) |
21 |
20
|
oveq1d |
|- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) = ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) |
22 |
19 21
|
oveq12d |
|- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) = ( ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) ) |
23 |
|
bcrpcl |
|- ( K e. ( 0 ... N ) -> ( N _C K ) e. RR+ ) |
24 |
23
|
rpcnd |
|- ( K e. ( 0 ... N ) -> ( N _C K ) e. CC ) |
25 |
2
|
peano2zd |
|- ( K e. ( 0 ... N ) -> ( N + 1 ) e. ZZ ) |
26 |
25
|
zred |
|- ( K e. ( 0 ... N ) -> ( N + 1 ) e. RR ) |
27 |
3
|
zred |
|- ( K e. ( 0 ... N ) -> K e. RR ) |
28 |
2
|
zred |
|- ( K e. ( 0 ... N ) -> N e. RR ) |
29 |
|
elfzle2 |
|- ( K e. ( 0 ... N ) -> K <_ N ) |
30 |
28
|
ltp1d |
|- ( K e. ( 0 ... N ) -> N < ( N + 1 ) ) |
31 |
27 28 26 29 30
|
lelttrd |
|- ( K e. ( 0 ... N ) -> K < ( N + 1 ) ) |
32 |
|
znnsub |
|- ( ( K e. ZZ /\ ( N + 1 ) e. ZZ ) -> ( K < ( N + 1 ) <-> ( ( N + 1 ) - K ) e. NN ) ) |
33 |
3 25 32
|
syl2anc |
|- ( K e. ( 0 ... N ) -> ( K < ( N + 1 ) <-> ( ( N + 1 ) - K ) e. NN ) ) |
34 |
31 33
|
mpbid |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. NN ) |
35 |
26 34
|
nndivred |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) / ( ( N + 1 ) - K ) ) e. RR ) |
36 |
35
|
recnd |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) / ( ( N + 1 ) - K ) ) e. CC ) |
37 |
34
|
nnred |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. RR ) |
38 |
|
elfznn0 |
|- ( K e. ( 0 ... N ) -> K e. NN0 ) |
39 |
|
nn0p1nn |
|- ( K e. NN0 -> ( K + 1 ) e. NN ) |
40 |
38 39
|
syl |
|- ( K e. ( 0 ... N ) -> ( K + 1 ) e. NN ) |
41 |
37 40
|
nndivred |
|- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) - K ) / ( K + 1 ) ) e. RR ) |
42 |
41
|
recnd |
|- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) - K ) / ( K + 1 ) ) e. CC ) |
43 |
24 36 42
|
mulassd |
|- ( K e. ( 0 ... N ) -> ( ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) = ( ( N _C K ) x. ( ( ( N + 1 ) / ( ( N + 1 ) - K ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) ) ) |
44 |
25
|
zcnd |
|- ( K e. ( 0 ... N ) -> ( N + 1 ) e. CC ) |
45 |
34
|
nncnd |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. CC ) |
46 |
40
|
nncnd |
|- ( K e. ( 0 ... N ) -> ( K + 1 ) e. CC ) |
47 |
34
|
nnne0d |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) =/= 0 ) |
48 |
40
|
nnne0d |
|- ( K e. ( 0 ... N ) -> ( K + 1 ) =/= 0 ) |
49 |
44 45 46 47 48
|
dmdcan2d |
|- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) / ( ( N + 1 ) - K ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) = ( ( N + 1 ) / ( K + 1 ) ) ) |
50 |
49
|
oveq2d |
|- ( K e. ( 0 ... N ) -> ( ( N _C K ) x. ( ( ( N + 1 ) / ( ( N + 1 ) - K ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) |
51 |
43 50
|
eqtrd |
|- ( K e. ( 0 ... N ) -> ( ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) x. ( ( ( N + 1 ) - K ) / ( K + 1 ) ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) |
52 |
22 51
|
eqtrd |
|- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) _C ( ( K + 1 ) - 1 ) ) x. ( ( ( N + 1 ) - ( ( K + 1 ) - 1 ) ) / ( K + 1 ) ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) |
53 |
12 52
|
eqtrd |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C ( K + 1 ) ) = ( ( N _C K ) x. ( ( N + 1 ) / ( K + 1 ) ) ) ) |