Step |
Hyp |
Ref |
Expression |
1 |
|
bcval2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
2 |
|
elfz3nn0 |
|- ( K e. ( 0 ... N ) -> N e. NN0 ) |
3 |
2
|
faccld |
|- ( K e. ( 0 ... N ) -> ( ! ` N ) e. NN ) |
4 |
|
fznn0sub |
|- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
5 |
|
elfznn0 |
|- ( K e. ( 0 ... N ) -> K e. NN0 ) |
6 |
|
faccl |
|- ( ( N - K ) e. NN0 -> ( ! ` ( N - K ) ) e. NN ) |
7 |
|
faccl |
|- ( K e. NN0 -> ( ! ` K ) e. NN ) |
8 |
|
nnmulcl |
|- ( ( ( ! ` ( N - K ) ) e. NN /\ ( ! ` K ) e. NN ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
9 |
6 7 8
|
syl2an |
|- ( ( ( N - K ) e. NN0 /\ K e. NN0 ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
10 |
4 5 9
|
syl2anc |
|- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
11 |
|
nnrp |
|- ( ( ! ` N ) e. NN -> ( ! ` N ) e. RR+ ) |
12 |
|
nnrp |
|- ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. RR+ ) |
13 |
|
rpdivcl |
|- ( ( ( ! ` N ) e. RR+ /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. RR+ ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) e. RR+ ) |
14 |
11 12 13
|
syl2an |
|- ( ( ( ! ` N ) e. NN /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) e. RR+ ) |
15 |
3 10 14
|
syl2anc |
|- ( K e. ( 0 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) e. RR+ ) |
16 |
1 15
|
eqeltrd |
|- ( K e. ( 0 ... N ) -> ( N _C K ) e. RR+ ) |