| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bcval2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 2 |
|
elfz3nn0 |
|- ( K e. ( 0 ... N ) -> N e. NN0 ) |
| 3 |
2
|
faccld |
|- ( K e. ( 0 ... N ) -> ( ! ` N ) e. NN ) |
| 4 |
|
fznn0sub |
|- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
| 5 |
|
elfznn0 |
|- ( K e. ( 0 ... N ) -> K e. NN0 ) |
| 6 |
|
faccl |
|- ( ( N - K ) e. NN0 -> ( ! ` ( N - K ) ) e. NN ) |
| 7 |
|
faccl |
|- ( K e. NN0 -> ( ! ` K ) e. NN ) |
| 8 |
|
nnmulcl |
|- ( ( ( ! ` ( N - K ) ) e. NN /\ ( ! ` K ) e. NN ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( ( N - K ) e. NN0 /\ K e. NN0 ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
| 10 |
4 5 9
|
syl2anc |
|- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
| 11 |
|
nnrp |
|- ( ( ! ` N ) e. NN -> ( ! ` N ) e. RR+ ) |
| 12 |
|
nnrp |
|- ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. RR+ ) |
| 13 |
|
rpdivcl |
|- ( ( ( ! ` N ) e. RR+ /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. RR+ ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) e. RR+ ) |
| 14 |
11 12 13
|
syl2an |
|- ( ( ( ! ` N ) e. NN /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) e. RR+ ) |
| 15 |
3 10 14
|
syl2anc |
|- ( K e. ( 0 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) e. RR+ ) |
| 16 |
1 15
|
eqeltrd |
|- ( K e. ( 0 ... N ) -> ( N _C K ) e. RR+ ) |