Metamath Proof Explorer


Theorem bcseqi

Description: Equality case of Bunjakovaskij-Cauchy-Schwarz inequality. Specifically, in the equality case the two vectors are collinear. Compare bcsiHIL . (Contributed by NM, 16-Jul-2001) (New usage is discouraged.)

Ref Expression
Hypotheses normlem7t.1
|- A e. ~H
normlem7t.2
|- B e. ~H
Assertion bcseqi
|- ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) <-> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) )

Proof

Step Hyp Ref Expression
1 normlem7t.1
 |-  A e. ~H
2 normlem7t.2
 |-  B e. ~H
3 2 2 hicli
 |-  ( B .ih B ) e. CC
4 3 1 hvmulcli
 |-  ( ( B .ih B ) .h A ) e. ~H
5 1 2 hicli
 |-  ( A .ih B ) e. CC
6 5 2 hvmulcli
 |-  ( ( A .ih B ) .h B ) e. ~H
7 4 6 4 6 normlem9
 |-  ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = ( ( ( ( ( B .ih B ) .h A ) .ih ( ( B .ih B ) .h A ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( A .ih B ) .h B ) ) ) - ( ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) ) )
8 oveq1
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) -> ( ( ( A .ih B ) x. ( B .ih A ) ) x. ( B .ih B ) ) = ( ( ( A .ih A ) x. ( B .ih B ) ) x. ( B .ih B ) ) )
9 8 eqcomd
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) -> ( ( ( A .ih A ) x. ( B .ih B ) ) x. ( B .ih B ) ) = ( ( ( A .ih B ) x. ( B .ih A ) ) x. ( B .ih B ) ) )
10 his5
 |-  ( ( ( B .ih B ) e. CC /\ ( ( B .ih B ) .h A ) e. ~H /\ A e. ~H ) -> ( ( ( B .ih B ) .h A ) .ih ( ( B .ih B ) .h A ) ) = ( ( * ` ( B .ih B ) ) x. ( ( ( B .ih B ) .h A ) .ih A ) ) )
11 3 4 1 10 mp3an
 |-  ( ( ( B .ih B ) .h A ) .ih ( ( B .ih B ) .h A ) ) = ( ( * ` ( B .ih B ) ) x. ( ( ( B .ih B ) .h A ) .ih A ) )
12 hiidrcl
 |-  ( B e. ~H -> ( B .ih B ) e. RR )
13 cjre
 |-  ( ( B .ih B ) e. RR -> ( * ` ( B .ih B ) ) = ( B .ih B ) )
14 2 12 13 mp2b
 |-  ( * ` ( B .ih B ) ) = ( B .ih B )
15 ax-his3
 |-  ( ( ( B .ih B ) e. CC /\ A e. ~H /\ A e. ~H ) -> ( ( ( B .ih B ) .h A ) .ih A ) = ( ( B .ih B ) x. ( A .ih A ) ) )
16 3 1 1 15 mp3an
 |-  ( ( ( B .ih B ) .h A ) .ih A ) = ( ( B .ih B ) x. ( A .ih A ) )
17 14 16 oveq12i
 |-  ( ( * ` ( B .ih B ) ) x. ( ( ( B .ih B ) .h A ) .ih A ) ) = ( ( B .ih B ) x. ( ( B .ih B ) x. ( A .ih A ) ) )
18 1 1 hicli
 |-  ( A .ih A ) e. CC
19 3 18 mulcli
 |-  ( ( B .ih B ) x. ( A .ih A ) ) e. CC
20 3 19 mulcomi
 |-  ( ( B .ih B ) x. ( ( B .ih B ) x. ( A .ih A ) ) ) = ( ( ( B .ih B ) x. ( A .ih A ) ) x. ( B .ih B ) )
21 18 3 mulcomi
 |-  ( ( A .ih A ) x. ( B .ih B ) ) = ( ( B .ih B ) x. ( A .ih A ) )
22 21 oveq1i
 |-  ( ( ( A .ih A ) x. ( B .ih B ) ) x. ( B .ih B ) ) = ( ( ( B .ih B ) x. ( A .ih A ) ) x. ( B .ih B ) )
23 20 22 eqtr4i
 |-  ( ( B .ih B ) x. ( ( B .ih B ) x. ( A .ih A ) ) ) = ( ( ( A .ih A ) x. ( B .ih B ) ) x. ( B .ih B ) )
24 11 17 23 3eqtri
 |-  ( ( ( B .ih B ) .h A ) .ih ( ( B .ih B ) .h A ) ) = ( ( ( A .ih A ) x. ( B .ih B ) ) x. ( B .ih B ) )
25 his5
 |-  ( ( ( A .ih B ) e. CC /\ ( ( B .ih B ) .h A ) e. ~H /\ B e. ~H ) -> ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) = ( ( * ` ( A .ih B ) ) x. ( ( ( B .ih B ) .h A ) .ih B ) ) )
26 5 4 2 25 mp3an
 |-  ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) = ( ( * ` ( A .ih B ) ) x. ( ( ( B .ih B ) .h A ) .ih B ) )
27 2 1 his1i
 |-  ( B .ih A ) = ( * ` ( A .ih B ) )
28 27 eqcomi
 |-  ( * ` ( A .ih B ) ) = ( B .ih A )
29 ax-his3
 |-  ( ( ( B .ih B ) e. CC /\ A e. ~H /\ B e. ~H ) -> ( ( ( B .ih B ) .h A ) .ih B ) = ( ( B .ih B ) x. ( A .ih B ) ) )
30 3 1 2 29 mp3an
 |-  ( ( ( B .ih B ) .h A ) .ih B ) = ( ( B .ih B ) x. ( A .ih B ) )
31 28 30 oveq12i
 |-  ( ( * ` ( A .ih B ) ) x. ( ( ( B .ih B ) .h A ) .ih B ) ) = ( ( B .ih A ) x. ( ( B .ih B ) x. ( A .ih B ) ) )
32 2 1 hicli
 |-  ( B .ih A ) e. CC
33 3 5 mulcli
 |-  ( ( B .ih B ) x. ( A .ih B ) ) e. CC
34 32 33 mulcomi
 |-  ( ( B .ih A ) x. ( ( B .ih B ) x. ( A .ih B ) ) ) = ( ( ( B .ih B ) x. ( A .ih B ) ) x. ( B .ih A ) )
35 3 5 32 mulassi
 |-  ( ( ( B .ih B ) x. ( A .ih B ) ) x. ( B .ih A ) ) = ( ( B .ih B ) x. ( ( A .ih B ) x. ( B .ih A ) ) )
36 5 32 mulcli
 |-  ( ( A .ih B ) x. ( B .ih A ) ) e. CC
37 3 36 mulcomi
 |-  ( ( B .ih B ) x. ( ( A .ih B ) x. ( B .ih A ) ) ) = ( ( ( A .ih B ) x. ( B .ih A ) ) x. ( B .ih B ) )
38 34 35 37 3eqtri
 |-  ( ( B .ih A ) x. ( ( B .ih B ) x. ( A .ih B ) ) ) = ( ( ( A .ih B ) x. ( B .ih A ) ) x. ( B .ih B ) )
39 26 31 38 3eqtri
 |-  ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) = ( ( ( A .ih B ) x. ( B .ih A ) ) x. ( B .ih B ) )
40 9 24 39 3eqtr4g
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) -> ( ( ( B .ih B ) .h A ) .ih ( ( B .ih B ) .h A ) ) = ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) )
41 ax-his3
 |-  ( ( ( A .ih B ) e. CC /\ B e. ~H /\ A e. ~H ) -> ( ( ( A .ih B ) .h B ) .ih A ) = ( ( A .ih B ) x. ( B .ih A ) ) )
42 5 2 1 41 mp3an
 |-  ( ( ( A .ih B ) .h B ) .ih A ) = ( ( A .ih B ) x. ( B .ih A ) )
43 14 42 oveq12i
 |-  ( ( * ` ( B .ih B ) ) x. ( ( ( A .ih B ) .h B ) .ih A ) ) = ( ( B .ih B ) x. ( ( A .ih B ) x. ( B .ih A ) ) )
44 his5
 |-  ( ( ( B .ih B ) e. CC /\ ( ( A .ih B ) .h B ) e. ~H /\ A e. ~H ) -> ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) = ( ( * ` ( B .ih B ) ) x. ( ( ( A .ih B ) .h B ) .ih A ) ) )
45 3 6 1 44 mp3an
 |-  ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) = ( ( * ` ( B .ih B ) ) x. ( ( ( A .ih B ) .h B ) .ih A ) )
46 his5
 |-  ( ( ( A .ih B ) e. CC /\ ( ( A .ih B ) .h B ) e. ~H /\ B e. ~H ) -> ( ( ( A .ih B ) .h B ) .ih ( ( A .ih B ) .h B ) ) = ( ( * ` ( A .ih B ) ) x. ( ( ( A .ih B ) .h B ) .ih B ) ) )
47 5 6 2 46 mp3an
 |-  ( ( ( A .ih B ) .h B ) .ih ( ( A .ih B ) .h B ) ) = ( ( * ` ( A .ih B ) ) x. ( ( ( A .ih B ) .h B ) .ih B ) )
48 ax-his3
 |-  ( ( ( A .ih B ) e. CC /\ B e. ~H /\ B e. ~H ) -> ( ( ( A .ih B ) .h B ) .ih B ) = ( ( A .ih B ) x. ( B .ih B ) ) )
49 5 2 2 48 mp3an
 |-  ( ( ( A .ih B ) .h B ) .ih B ) = ( ( A .ih B ) x. ( B .ih B ) )
50 28 49 oveq12i
 |-  ( ( * ` ( A .ih B ) ) x. ( ( ( A .ih B ) .h B ) .ih B ) ) = ( ( B .ih A ) x. ( ( A .ih B ) x. ( B .ih B ) ) )
51 5 3 mulcli
 |-  ( ( A .ih B ) x. ( B .ih B ) ) e. CC
52 32 51 mulcomi
 |-  ( ( B .ih A ) x. ( ( A .ih B ) x. ( B .ih B ) ) ) = ( ( ( A .ih B ) x. ( B .ih B ) ) x. ( B .ih A ) )
53 5 3 32 mul32i
 |-  ( ( ( A .ih B ) x. ( B .ih B ) ) x. ( B .ih A ) ) = ( ( ( A .ih B ) x. ( B .ih A ) ) x. ( B .ih B ) )
54 36 3 mulcomi
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) x. ( B .ih B ) ) = ( ( B .ih B ) x. ( ( A .ih B ) x. ( B .ih A ) ) )
55 52 53 54 3eqtri
 |-  ( ( B .ih A ) x. ( ( A .ih B ) x. ( B .ih B ) ) ) = ( ( B .ih B ) x. ( ( A .ih B ) x. ( B .ih A ) ) )
56 47 50 55 3eqtri
 |-  ( ( ( A .ih B ) .h B ) .ih ( ( A .ih B ) .h B ) ) = ( ( B .ih B ) x. ( ( A .ih B ) x. ( B .ih A ) ) )
57 43 45 56 3eqtr4ri
 |-  ( ( ( A .ih B ) .h B ) .ih ( ( A .ih B ) .h B ) ) = ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) )
58 57 a1i
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) -> ( ( ( A .ih B ) .h B ) .ih ( ( A .ih B ) .h B ) ) = ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) )
59 40 58 oveq12d
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) -> ( ( ( ( B .ih B ) .h A ) .ih ( ( B .ih B ) .h A ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( A .ih B ) .h B ) ) ) = ( ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) ) )
60 59 oveq1d
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) -> ( ( ( ( ( B .ih B ) .h A ) .ih ( ( B .ih B ) .h A ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( A .ih B ) .h B ) ) ) - ( ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) ) ) = ( ( ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) ) - ( ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) ) ) )
61 4 6 hicli
 |-  ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) e. CC
62 6 4 hicli
 |-  ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) e. CC
63 61 62 addcli
 |-  ( ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) ) e. CC
64 63 subidi
 |-  ( ( ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) ) - ( ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) ) ) = 0
65 60 64 eqtrdi
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) -> ( ( ( ( ( B .ih B ) .h A ) .ih ( ( B .ih B ) .h A ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( A .ih B ) .h B ) ) ) - ( ( ( ( B .ih B ) .h A ) .ih ( ( A .ih B ) .h B ) ) + ( ( ( A .ih B ) .h B ) .ih ( ( B .ih B ) .h A ) ) ) ) = 0 )
66 7 65 syl5eq
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 )
67 4 6 hvsubcli
 |-  ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H
68 his6
 |-  ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H -> ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 <-> ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) = 0h ) )
69 67 68 ax-mp
 |-  ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 <-> ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) = 0h )
70 66 69 sylib
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) -> ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) = 0h )
71 4 6 hvsubeq0i
 |-  ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) = 0h <-> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) )
72 70 71 sylib
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) -> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) )
73 oveq1
 |-  ( ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) -> ( ( ( B .ih B ) .h A ) .ih A ) = ( ( ( A .ih B ) .h B ) .ih A ) )
74 21 16 eqtr4i
 |-  ( ( A .ih A ) x. ( B .ih B ) ) = ( ( ( B .ih B ) .h A ) .ih A )
75 42 eqcomi
 |-  ( ( A .ih B ) x. ( B .ih A ) ) = ( ( ( A .ih B ) .h B ) .ih A )
76 73 74 75 3eqtr4g
 |-  ( ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) -> ( ( A .ih A ) x. ( B .ih B ) ) = ( ( A .ih B ) x. ( B .ih A ) ) )
77 76 eqcomd
 |-  ( ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) -> ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) )
78 72 77 impbii
 |-  ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) <-> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) )