Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of Beran p. 98. (Proved from ZFC version.) (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bcs.1 | |- A e. ~H |
|
bcs.2 | |- B e. ~H |
||
Assertion | bcsiHIL | |- ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bcs.1 | |- A e. ~H |
|
2 | bcs.2 | |- B e. ~H |
|
3 | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
|
4 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
5 | 4 | hhnm | |- normh = ( normCV ` <. <. +h , .h >. , normh >. ) |
6 | 4 | hhip | |- .ih = ( .iOLD ` <. <. +h , .h >. , normh >. ) |
7 | 4 | hhph | |- <. <. +h , .h >. , normh >. e. CPreHilOLD |
8 | 3 5 6 7 1 2 | siii | |- ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) |