Step |
Hyp |
Ref |
Expression |
1 |
|
bcth.2 |
|- J = ( MetOpen ` D ) |
2 |
|
simpll |
|- ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> D e. ( CMet ` X ) ) |
3 |
|
eleq1w |
|- ( x = y -> ( x e. X <-> y e. X ) ) |
4 |
|
eleq1w |
|- ( r = m -> ( r e. RR+ <-> m e. RR+ ) ) |
5 |
3 4
|
bi2anan9 |
|- ( ( x = y /\ r = m ) -> ( ( x e. X /\ r e. RR+ ) <-> ( y e. X /\ m e. RR+ ) ) ) |
6 |
|
simpr |
|- ( ( x = y /\ r = m ) -> r = m ) |
7 |
6
|
breq1d |
|- ( ( x = y /\ r = m ) -> ( r < ( 1 / k ) <-> m < ( 1 / k ) ) ) |
8 |
|
oveq12 |
|- ( ( x = y /\ r = m ) -> ( x ( ball ` D ) r ) = ( y ( ball ` D ) m ) ) |
9 |
8
|
fveq2d |
|- ( ( x = y /\ r = m ) -> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) = ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) ) |
10 |
9
|
sseq1d |
|- ( ( x = y /\ r = m ) -> ( ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) <-> ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) |
11 |
7 10
|
anbi12d |
|- ( ( x = y /\ r = m ) -> ( ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) <-> ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) |
12 |
5 11
|
anbi12d |
|- ( ( x = y /\ r = m ) -> ( ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) <-> ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) ) ) |
13 |
12
|
cbvopabv |
|- { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } |
14 |
|
oveq2 |
|- ( k = n -> ( 1 / k ) = ( 1 / n ) ) |
15 |
14
|
breq2d |
|- ( k = n -> ( m < ( 1 / k ) <-> m < ( 1 / n ) ) ) |
16 |
|
fveq2 |
|- ( k = n -> ( M ` k ) = ( M ` n ) ) |
17 |
16
|
difeq2d |
|- ( k = n -> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) = ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) |
18 |
17
|
sseq2d |
|- ( k = n -> ( ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) <-> ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) |
19 |
15 18
|
anbi12d |
|- ( k = n -> ( ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) <-> ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) ) |
20 |
19
|
anbi2d |
|- ( k = n -> ( ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) <-> ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) ) ) |
21 |
20
|
opabbidv |
|- ( k = n -> { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / k ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) } ) |
22 |
13 21
|
eqtrid |
|- ( k = n -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) } ) |
23 |
|
fveq2 |
|- ( z = g -> ( ( ball ` D ) ` z ) = ( ( ball ` D ) ` g ) ) |
24 |
23
|
difeq1d |
|- ( z = g -> ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) = ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) |
25 |
24
|
sseq2d |
|- ( z = g -> ( ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) <-> ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) |
26 |
25
|
anbi2d |
|- ( z = g -> ( ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) <-> ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) ) |
27 |
26
|
anbi2d |
|- ( z = g -> ( ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) <-> ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) ) ) |
28 |
27
|
opabbidv |
|- ( z = g -> { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` n ) ) ) ) } = { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) } ) |
29 |
22 28
|
cbvmpov |
|- ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } ) = ( n e. NN , g e. ( X X. RR+ ) |-> { <. y , m >. | ( ( y e. X /\ m e. RR+ ) /\ ( m < ( 1 / n ) /\ ( ( cls ` J ) ` ( y ( ball ` D ) m ) ) C_ ( ( ( ball ` D ) ` g ) \ ( M ` n ) ) ) ) } ) |
30 |
|
simplr |
|- ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> M : NN --> ( Clsd ` J ) ) |
31 |
|
simpr |
|- ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
32 |
16
|
fveqeq2d |
|- ( k = n -> ( ( ( int ` J ) ` ( M ` k ) ) = (/) <-> ( ( int ` J ) ` ( M ` n ) ) = (/) ) ) |
33 |
32
|
cbvralvw |
|- ( A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) <-> A. n e. NN ( ( int ` J ) ` ( M ` n ) ) = (/) ) |
34 |
31 33
|
sylib |
|- ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> A. n e. NN ( ( int ` J ) ` ( M ` n ) ) = (/) ) |
35 |
1 2 29 30 34
|
bcthlem5 |
|- ( ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) /\ A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) -> ( ( int ` J ) ` U. ran M ) = (/) ) |
36 |
35
|
ex |
|- ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) -> ( A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) -> ( ( int ` J ) ` U. ran M ) = (/) ) ) |
37 |
36
|
necon3ad |
|- ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) ) -> ( ( ( int ` J ) ` U. ran M ) =/= (/) -> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) ) |
38 |
37
|
3impia |
|- ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) /\ ( ( int ` J ) ` U. ran M ) =/= (/) ) -> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
39 |
|
df-ne |
|- ( ( ( int ` J ) ` ( M ` k ) ) =/= (/) <-> -. ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
40 |
39
|
rexbii |
|- ( E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) <-> E. k e. NN -. ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
41 |
|
rexnal |
|- ( E. k e. NN -. ( ( int ` J ) ` ( M ` k ) ) = (/) <-> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
42 |
40 41
|
bitri |
|- ( E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) <-> -. A. k e. NN ( ( int ` J ) ` ( M ` k ) ) = (/) ) |
43 |
38 42
|
sylibr |
|- ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) /\ ( ( int ` J ) ` U. ran M ) =/= (/) ) -> E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) |