Step |
Hyp |
Ref |
Expression |
1 |
|
bcth.2 |
|- J = ( MetOpen ` D ) |
2 |
|
simpll |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> D e. ( CMet ` X ) ) |
3 |
|
simprl |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> M : NN --> ( Clsd ` J ) ) |
4 |
|
cmetmet |
|- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
5 |
4
|
ad2antrr |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> D e. ( Met ` X ) ) |
6 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
7 |
1
|
mopntopon |
|- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
8 |
5 6 7
|
3syl |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> J e. ( TopOn ` X ) ) |
9 |
|
topontop |
|- ( J e. ( TopOn ` X ) -> J e. Top ) |
10 |
8 9
|
syl |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> J e. Top ) |
11 |
|
simprr |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> U. ran M = X ) |
12 |
|
toponmax |
|- ( J e. ( TopOn ` X ) -> X e. J ) |
13 |
8 12
|
syl |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> X e. J ) |
14 |
11 13
|
eqeltrd |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> U. ran M e. J ) |
15 |
|
isopn3i |
|- ( ( J e. Top /\ U. ran M e. J ) -> ( ( int ` J ) ` U. ran M ) = U. ran M ) |
16 |
10 14 15
|
syl2anc |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> ( ( int ` J ) ` U. ran M ) = U. ran M ) |
17 |
16 11
|
eqtrd |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> ( ( int ` J ) ` U. ran M ) = X ) |
18 |
|
simplr |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> X =/= (/) ) |
19 |
17 18
|
eqnetrd |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> ( ( int ` J ) ` U. ran M ) =/= (/) ) |
20 |
1
|
bcth |
|- ( ( D e. ( CMet ` X ) /\ M : NN --> ( Clsd ` J ) /\ ( ( int ` J ) ` U. ran M ) =/= (/) ) -> E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) |
21 |
2 3 19 20
|
syl3anc |
|- ( ( ( D e. ( CMet ` X ) /\ X =/= (/) ) /\ ( M : NN --> ( Clsd ` J ) /\ U. ran M = X ) ) -> E. k e. NN ( ( int ` J ) ` ( M ` k ) ) =/= (/) ) |