Step |
Hyp |
Ref |
Expression |
1 |
|
bcth.2 |
|- J = ( MetOpen ` D ) |
2 |
|
bcthlem.4 |
|- ( ph -> D e. ( CMet ` X ) ) |
3 |
|
bcthlem.5 |
|- F = ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } ) |
4 |
|
opabssxp |
|- { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } C_ ( X X. RR+ ) |
5 |
|
elfvdm |
|- ( D e. ( CMet ` X ) -> X e. dom CMet ) |
6 |
2 5
|
syl |
|- ( ph -> X e. dom CMet ) |
7 |
|
reex |
|- RR e. _V |
8 |
|
rpssre |
|- RR+ C_ RR |
9 |
7 8
|
ssexi |
|- RR+ e. _V |
10 |
|
xpexg |
|- ( ( X e. dom CMet /\ RR+ e. _V ) -> ( X X. RR+ ) e. _V ) |
11 |
6 9 10
|
sylancl |
|- ( ph -> ( X X. RR+ ) e. _V ) |
12 |
|
ssexg |
|- ( ( { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } C_ ( X X. RR+ ) /\ ( X X. RR+ ) e. _V ) -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } e. _V ) |
13 |
4 11 12
|
sylancr |
|- ( ph -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } e. _V ) |
14 |
|
oveq2 |
|- ( k = A -> ( 1 / k ) = ( 1 / A ) ) |
15 |
14
|
breq2d |
|- ( k = A -> ( r < ( 1 / k ) <-> r < ( 1 / A ) ) ) |
16 |
|
fveq2 |
|- ( k = A -> ( M ` k ) = ( M ` A ) ) |
17 |
16
|
difeq2d |
|- ( k = A -> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) = ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) |
18 |
17
|
sseq2d |
|- ( k = A -> ( ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) <-> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) |
19 |
15 18
|
anbi12d |
|- ( k = A -> ( ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) <-> ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) ) |
20 |
19
|
anbi2d |
|- ( k = A -> ( ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) <-> ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) ) ) |
21 |
20
|
opabbidv |
|- ( k = A -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) } ) |
22 |
|
fveq2 |
|- ( z = B -> ( ( ball ` D ) ` z ) = ( ( ball ` D ) ` B ) ) |
23 |
22
|
difeq1d |
|- ( z = B -> ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) = ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) |
24 |
23
|
sseq2d |
|- ( z = B -> ( ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) <-> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) |
25 |
24
|
anbi2d |
|- ( z = B -> ( ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) <-> ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) |
26 |
25
|
anbi2d |
|- ( z = B -> ( ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) <-> ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) ) |
27 |
26
|
opabbidv |
|- ( z = B -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) } = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) |
28 |
21 27 3
|
ovmpog |
|- ( ( A e. NN /\ B e. ( X X. RR+ ) /\ { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } e. _V ) -> ( A F B ) = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) |
29 |
13 28
|
syl3an3 |
|- ( ( A e. NN /\ B e. ( X X. RR+ ) /\ ph ) -> ( A F B ) = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) |
30 |
29
|
3expa |
|- ( ( ( A e. NN /\ B e. ( X X. RR+ ) ) /\ ph ) -> ( A F B ) = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) |
31 |
30
|
ancoms |
|- ( ( ph /\ ( A e. NN /\ B e. ( X X. RR+ ) ) ) -> ( A F B ) = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) |
32 |
31
|
eleq2d |
|- ( ( ph /\ ( A e. NN /\ B e. ( X X. RR+ ) ) ) -> ( C e. ( A F B ) <-> C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) ) |
33 |
4
|
sseli |
|- ( C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } -> C e. ( X X. RR+ ) ) |
34 |
|
simp1 |
|- ( ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) -> C e. ( X X. RR+ ) ) |
35 |
|
1st2nd2 |
|- ( C e. ( X X. RR+ ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) |
36 |
35
|
eleq1d |
|- ( C e. ( X X. RR+ ) -> ( C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } <-> <. ( 1st ` C ) , ( 2nd ` C ) >. e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) ) |
37 |
|
fvex |
|- ( 1st ` C ) e. _V |
38 |
|
fvex |
|- ( 2nd ` C ) e. _V |
39 |
|
eleq1 |
|- ( x = ( 1st ` C ) -> ( x e. X <-> ( 1st ` C ) e. X ) ) |
40 |
|
eleq1 |
|- ( r = ( 2nd ` C ) -> ( r e. RR+ <-> ( 2nd ` C ) e. RR+ ) ) |
41 |
39 40
|
bi2anan9 |
|- ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( ( x e. X /\ r e. RR+ ) <-> ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) ) ) |
42 |
|
simpr |
|- ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> r = ( 2nd ` C ) ) |
43 |
42
|
breq1d |
|- ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( r < ( 1 / A ) <-> ( 2nd ` C ) < ( 1 / A ) ) ) |
44 |
|
oveq12 |
|- ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( x ( ball ` D ) r ) = ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) |
45 |
44
|
fveq2d |
|- ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) = ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) ) |
46 |
45
|
sseq1d |
|- ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) <-> ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) |
47 |
43 46
|
anbi12d |
|- ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) <-> ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) |
48 |
41 47
|
anbi12d |
|- ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) <-> ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) ) |
49 |
37 38 48
|
opelopaba |
|- ( <. ( 1st ` C ) , ( 2nd ` C ) >. e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } <-> ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) |
50 |
36 49
|
bitrdi |
|- ( C e. ( X X. RR+ ) -> ( C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } <-> ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) ) |
51 |
35
|
eleq1d |
|- ( C e. ( X X. RR+ ) -> ( C e. ( X X. RR+ ) <-> <. ( 1st ` C ) , ( 2nd ` C ) >. e. ( X X. RR+ ) ) ) |
52 |
|
opelxp |
|- ( <. ( 1st ` C ) , ( 2nd ` C ) >. e. ( X X. RR+ ) <-> ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) ) |
53 |
51 52
|
bitr2di |
|- ( C e. ( X X. RR+ ) -> ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) <-> C e. ( X X. RR+ ) ) ) |
54 |
|
df-ov |
|- ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) = ( ( ball ` D ) ` <. ( 1st ` C ) , ( 2nd ` C ) >. ) |
55 |
35
|
fveq2d |
|- ( C e. ( X X. RR+ ) -> ( ( ball ` D ) ` C ) = ( ( ball ` D ) ` <. ( 1st ` C ) , ( 2nd ` C ) >. ) ) |
56 |
54 55
|
eqtr4id |
|- ( C e. ( X X. RR+ ) -> ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) = ( ( ball ` D ) ` C ) ) |
57 |
56
|
fveq2d |
|- ( C e. ( X X. RR+ ) -> ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) = ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) ) |
58 |
57
|
sseq1d |
|- ( C e. ( X X. RR+ ) -> ( ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) <-> ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) |
59 |
58
|
anbi2d |
|- ( C e. ( X X. RR+ ) -> ( ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) <-> ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) |
60 |
53 59
|
anbi12d |
|- ( C e. ( X X. RR+ ) -> ( ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) <-> ( C e. ( X X. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) ) |
61 |
|
3anass |
|- ( ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) <-> ( C e. ( X X. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) |
62 |
60 61
|
bitr4di |
|- ( C e. ( X X. RR+ ) -> ( ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) <-> ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) |
63 |
50 62
|
bitrd |
|- ( C e. ( X X. RR+ ) -> ( C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } <-> ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) |
64 |
33 34 63
|
pm5.21nii |
|- ( C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } <-> ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) |
65 |
32 64
|
bitrdi |
|- ( ( ph /\ ( A e. NN /\ B e. ( X X. RR+ ) ) ) -> ( C e. ( A F B ) <-> ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) |