| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bcth.2 |
|- J = ( MetOpen ` D ) |
| 2 |
|
bcthlem.4 |
|- ( ph -> D e. ( CMet ` X ) ) |
| 3 |
|
bcthlem.5 |
|- F = ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } ) |
| 4 |
|
bcthlem.6 |
|- ( ph -> M : NN --> ( Clsd ` J ) ) |
| 5 |
|
bcthlem.7 |
|- ( ph -> R e. RR+ ) |
| 6 |
|
bcthlem.8 |
|- ( ph -> C e. X ) |
| 7 |
|
bcthlem.9 |
|- ( ph -> g : NN --> ( X X. RR+ ) ) |
| 8 |
|
bcthlem.10 |
|- ( ph -> ( g ` 1 ) = <. C , R >. ) |
| 9 |
|
bcthlem.11 |
|- ( ph -> A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) |
| 10 |
|
fvoveq1 |
|- ( k = n -> ( g ` ( k + 1 ) ) = ( g ` ( n + 1 ) ) ) |
| 11 |
|
id |
|- ( k = n -> k = n ) |
| 12 |
|
fveq2 |
|- ( k = n -> ( g ` k ) = ( g ` n ) ) |
| 13 |
11 12
|
oveq12d |
|- ( k = n -> ( k F ( g ` k ) ) = ( n F ( g ` n ) ) ) |
| 14 |
10 13
|
eleq12d |
|- ( k = n -> ( ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) ) |
| 15 |
14
|
rspccva |
|- ( ( A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) /\ n e. NN ) -> ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) |
| 16 |
9 15
|
sylan |
|- ( ( ph /\ n e. NN ) -> ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) ) |
| 17 |
7
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( g ` n ) e. ( X X. RR+ ) ) |
| 18 |
1 2 3
|
bcthlem1 |
|- ( ( ph /\ ( n e. NN /\ ( g ` n ) e. ( X X. RR+ ) ) ) -> ( ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) <-> ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) ) ) |
| 19 |
18
|
expr |
|- ( ( ph /\ n e. NN ) -> ( ( g ` n ) e. ( X X. RR+ ) -> ( ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) <-> ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) ) ) ) |
| 20 |
17 19
|
mpd |
|- ( ( ph /\ n e. NN ) -> ( ( g ` ( n + 1 ) ) e. ( n F ( g ` n ) ) <-> ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) ) ) |
| 21 |
16 20
|
mpbid |
|- ( ( ph /\ n e. NN ) -> ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) ) |
| 22 |
|
cmetmet |
|- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
| 23 |
2 22
|
syl |
|- ( ph -> D e. ( Met ` X ) ) |
| 24 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
| 25 |
23 24
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
| 26 |
1
|
mopntop |
|- ( D e. ( *Met ` X ) -> J e. Top ) |
| 27 |
25 26
|
syl |
|- ( ph -> J e. Top ) |
| 28 |
|
xp1st |
|- ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( 1st ` ( g ` ( n + 1 ) ) ) e. X ) |
| 29 |
|
xp2nd |
|- ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( 2nd ` ( g ` ( n + 1 ) ) ) e. RR+ ) |
| 30 |
29
|
rpxrd |
|- ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( 2nd ` ( g ` ( n + 1 ) ) ) e. RR* ) |
| 31 |
28 30
|
jca |
|- ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) e. X /\ ( 2nd ` ( g ` ( n + 1 ) ) ) e. RR* ) ) |
| 32 |
|
blssm |
|- ( ( D e. ( *Met ` X ) /\ ( 1st ` ( g ` ( n + 1 ) ) ) e. X /\ ( 2nd ` ( g ` ( n + 1 ) ) ) e. RR* ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) C_ X ) |
| 33 |
32
|
3expb |
|- ( ( D e. ( *Met ` X ) /\ ( ( 1st ` ( g ` ( n + 1 ) ) ) e. X /\ ( 2nd ` ( g ` ( n + 1 ) ) ) e. RR* ) ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) C_ X ) |
| 34 |
25 31 33
|
syl2an |
|- ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) C_ X ) |
| 35 |
|
df-ov |
|- ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( g ` ( n + 1 ) ) ) , ( 2nd ` ( g ` ( n + 1 ) ) ) >. ) |
| 36 |
|
1st2nd2 |
|- ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( g ` ( n + 1 ) ) = <. ( 1st ` ( g ` ( n + 1 ) ) ) , ( 2nd ` ( g ` ( n + 1 ) ) ) >. ) |
| 37 |
36
|
fveq2d |
|- ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( g ` ( n + 1 ) ) ) , ( 2nd ` ( g ` ( n + 1 ) ) ) >. ) ) |
| 38 |
35 37
|
eqtr4id |
|- ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) = ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) |
| 39 |
38
|
adantl |
|- ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( 1st ` ( g ` ( n + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( n + 1 ) ) ) ) = ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) |
| 40 |
1
|
mopnuni |
|- ( D e. ( *Met ` X ) -> X = U. J ) |
| 41 |
25 40
|
syl |
|- ( ph -> X = U. J ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> X = U. J ) |
| 43 |
34 39 42
|
3sstr3d |
|- ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ U. J ) |
| 44 |
|
eqid |
|- U. J = U. J |
| 45 |
44
|
sscls |
|- ( ( J e. Top /\ ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ U. J ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) ) |
| 46 |
27 43 45
|
syl2an2r |
|- ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) ) |
| 47 |
|
difss2 |
|- ( ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) |
| 48 |
|
sstr2 |
|- ( ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) -> ( ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) |
| 49 |
46 47 48
|
syl2im |
|- ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) |
| 50 |
49
|
a1d |
|- ( ( ph /\ ( g ` ( n + 1 ) ) e. ( X X. RR+ ) ) -> ( ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) -> ( ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) ) |
| 51 |
50
|
ex |
|- ( ph -> ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) -> ( ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) -> ( ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) ) ) |
| 52 |
51
|
3impd |
|- ( ph -> ( ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( ( ( g ` ( n + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( n + 1 ) ) ) < ( 1 / n ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` n ) ) \ ( M ` n ) ) ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) ) |
| 54 |
21 53
|
mpd |
|- ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) |
| 55 |
54
|
ralrimiva |
|- ( ph -> A. n e. NN ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) |