Step |
Hyp |
Ref |
Expression |
1 |
|
bcth.2 |
|- J = ( MetOpen ` D ) |
2 |
|
bcthlem.4 |
|- ( ph -> D e. ( CMet ` X ) ) |
3 |
|
bcthlem.5 |
|- F = ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } ) |
4 |
|
bcthlem.6 |
|- ( ph -> M : NN --> ( Clsd ` J ) ) |
5 |
|
bcthlem.7 |
|- ( ph -> R e. RR+ ) |
6 |
|
bcthlem.8 |
|- ( ph -> C e. X ) |
7 |
|
bcthlem.9 |
|- ( ph -> g : NN --> ( X X. RR+ ) ) |
8 |
|
bcthlem.10 |
|- ( ph -> ( g ` 1 ) = <. C , R >. ) |
9 |
|
bcthlem.11 |
|- ( ph -> A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) |
10 |
|
fvoveq1 |
|- ( k = A -> ( g ` ( k + 1 ) ) = ( g ` ( A + 1 ) ) ) |
11 |
|
id |
|- ( k = A -> k = A ) |
12 |
|
fveq2 |
|- ( k = A -> ( g ` k ) = ( g ` A ) ) |
13 |
11 12
|
oveq12d |
|- ( k = A -> ( k F ( g ` k ) ) = ( A F ( g ` A ) ) ) |
14 |
10 13
|
eleq12d |
|- ( k = A -> ( ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) ) ) |
15 |
14
|
rspccva |
|- ( ( A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) /\ A e. NN ) -> ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) ) |
16 |
9 15
|
sylan |
|- ( ( ph /\ A e. NN ) -> ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) ) |
17 |
7
|
ffvelrnda |
|- ( ( ph /\ A e. NN ) -> ( g ` A ) e. ( X X. RR+ ) ) |
18 |
1 2 3
|
bcthlem1 |
|- ( ( ph /\ ( A e. NN /\ ( g ` A ) e. ( X X. RR+ ) ) ) -> ( ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) <-> ( ( g ` ( A + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( A + 1 ) ) ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` A ) ) \ ( M ` A ) ) ) ) ) |
19 |
18
|
expr |
|- ( ( ph /\ A e. NN ) -> ( ( g ` A ) e. ( X X. RR+ ) -> ( ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) <-> ( ( g ` ( A + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( A + 1 ) ) ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` A ) ) \ ( M ` A ) ) ) ) ) ) |
20 |
17 19
|
mpd |
|- ( ( ph /\ A e. NN ) -> ( ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) <-> ( ( g ` ( A + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( A + 1 ) ) ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` A ) ) \ ( M ` A ) ) ) ) ) |
21 |
16 20
|
mpbid |
|- ( ( ph /\ A e. NN ) -> ( ( g ` ( A + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( A + 1 ) ) ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` A ) ) \ ( M ` A ) ) ) ) |
22 |
21
|
simp3d |
|- ( ( ph /\ A e. NN ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` A ) ) \ ( M ` A ) ) ) |
23 |
22
|
difss2d |
|- ( ( ph /\ A e. NN ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ball ` D ) ` ( g ` A ) ) ) |
24 |
23
|
3adant2 |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ A e. NN ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ball ` D ) ` ( g ` A ) ) ) |
25 |
|
peano2nn |
|- ( A e. NN -> ( A + 1 ) e. NN ) |
26 |
|
cmetmet |
|- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
27 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
28 |
2 26 27
|
3syl |
|- ( ph -> D e. ( *Met ` X ) ) |
29 |
1 2 3 4 5 6 7 8 9
|
bcthlem2 |
|- ( ph -> A. n e. NN ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) |
30 |
28 7 29 1
|
caublcls |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ ( A + 1 ) e. NN ) -> x e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) ) |
31 |
25 30
|
syl3an3 |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ A e. NN ) -> x e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) ) |
32 |
24 31
|
sseldd |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ A e. NN ) -> x e. ( ( ball ` D ) ` ( g ` A ) ) ) |