Step |
Hyp |
Ref |
Expression |
1 |
|
bcth.2 |
|- J = ( MetOpen ` D ) |
2 |
|
bcthlem.4 |
|- ( ph -> D e. ( CMet ` X ) ) |
3 |
|
bcthlem.5 |
|- F = ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } ) |
4 |
|
bcthlem.6 |
|- ( ph -> M : NN --> ( Clsd ` J ) ) |
5 |
|
bcthlem.7 |
|- ( ph -> R e. RR+ ) |
6 |
|
bcthlem.8 |
|- ( ph -> C e. X ) |
7 |
|
bcthlem.9 |
|- ( ph -> g : NN --> ( X X. RR+ ) ) |
8 |
|
bcthlem.10 |
|- ( ph -> ( g ` 1 ) = <. C , R >. ) |
9 |
|
bcthlem.11 |
|- ( ph -> A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) |
10 |
|
cmetmet |
|- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
11 |
2 10
|
syl |
|- ( ph -> D e. ( Met ` X ) ) |
12 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
13 |
11 12
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
14 |
1 2 3 4 5 6 7 8 9
|
bcthlem2 |
|- ( ph -> A. n e. NN ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) |
15 |
|
elrp |
|- ( r e. RR+ <-> ( r e. RR /\ 0 < r ) ) |
16 |
|
nnrecl |
|- ( ( r e. RR /\ 0 < r ) -> E. m e. NN ( 1 / m ) < r ) |
17 |
15 16
|
sylbi |
|- ( r e. RR+ -> E. m e. NN ( 1 / m ) < r ) |
18 |
17
|
adantl |
|- ( ( ph /\ r e. RR+ ) -> E. m e. NN ( 1 / m ) < r ) |
19 |
|
peano2nn |
|- ( m e. NN -> ( m + 1 ) e. NN ) |
20 |
19
|
adantl |
|- ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( m + 1 ) e. NN ) |
21 |
|
fvoveq1 |
|- ( k = m -> ( g ` ( k + 1 ) ) = ( g ` ( m + 1 ) ) ) |
22 |
|
id |
|- ( k = m -> k = m ) |
23 |
|
fveq2 |
|- ( k = m -> ( g ` k ) = ( g ` m ) ) |
24 |
22 23
|
oveq12d |
|- ( k = m -> ( k F ( g ` k ) ) = ( m F ( g ` m ) ) ) |
25 |
21 24
|
eleq12d |
|- ( k = m -> ( ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) ) ) |
26 |
25
|
rspccva |
|- ( ( A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) /\ m e. NN ) -> ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) ) |
27 |
9 26
|
sylan |
|- ( ( ph /\ m e. NN ) -> ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) ) |
28 |
7
|
ffvelrnda |
|- ( ( ph /\ m e. NN ) -> ( g ` m ) e. ( X X. RR+ ) ) |
29 |
1 2 3
|
bcthlem1 |
|- ( ( ph /\ ( m e. NN /\ ( g ` m ) e. ( X X. RR+ ) ) ) -> ( ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) <-> ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) ) ) |
30 |
29
|
expr |
|- ( ( ph /\ m e. NN ) -> ( ( g ` m ) e. ( X X. RR+ ) -> ( ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) <-> ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) ) ) ) |
31 |
28 30
|
mpd |
|- ( ( ph /\ m e. NN ) -> ( ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) <-> ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) ) ) |
32 |
27 31
|
mpbid |
|- ( ( ph /\ m e. NN ) -> ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) ) |
33 |
32
|
simp2d |
|- ( ( ph /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) ) |
34 |
33
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) ) |
35 |
32
|
simp1d |
|- ( ( ph /\ m e. NN ) -> ( g ` ( m + 1 ) ) e. ( X X. RR+ ) ) |
36 |
|
xp2nd |
|- ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR+ ) |
37 |
35 36
|
syl |
|- ( ( ph /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR+ ) |
38 |
37
|
rpred |
|- ( ( ph /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR ) |
39 |
38
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR ) |
40 |
|
nnrecre |
|- ( m e. NN -> ( 1 / m ) e. RR ) |
41 |
40
|
adantl |
|- ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( 1 / m ) e. RR ) |
42 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
43 |
42
|
ad2antlr |
|- ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> r e. RR ) |
44 |
|
lttr |
|- ( ( ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR /\ ( 1 / m ) e. RR /\ r e. RR ) -> ( ( ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( 1 / m ) < r ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) < r ) ) |
45 |
39 41 43 44
|
syl3anc |
|- ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( ( ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( 1 / m ) < r ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) < r ) ) |
46 |
34 45
|
mpand |
|- ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( ( 1 / m ) < r -> ( 2nd ` ( g ` ( m + 1 ) ) ) < r ) ) |
47 |
|
2fveq3 |
|- ( n = ( m + 1 ) -> ( 2nd ` ( g ` n ) ) = ( 2nd ` ( g ` ( m + 1 ) ) ) ) |
48 |
47
|
breq1d |
|- ( n = ( m + 1 ) -> ( ( 2nd ` ( g ` n ) ) < r <-> ( 2nd ` ( g ` ( m + 1 ) ) ) < r ) ) |
49 |
48
|
rspcev |
|- ( ( ( m + 1 ) e. NN /\ ( 2nd ` ( g ` ( m + 1 ) ) ) < r ) -> E. n e. NN ( 2nd ` ( g ` n ) ) < r ) |
50 |
20 46 49
|
syl6an |
|- ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( ( 1 / m ) < r -> E. n e. NN ( 2nd ` ( g ` n ) ) < r ) ) |
51 |
50
|
rexlimdva |
|- ( ( ph /\ r e. RR+ ) -> ( E. m e. NN ( 1 / m ) < r -> E. n e. NN ( 2nd ` ( g ` n ) ) < r ) ) |
52 |
18 51
|
mpd |
|- ( ( ph /\ r e. RR+ ) -> E. n e. NN ( 2nd ` ( g ` n ) ) < r ) |
53 |
52
|
ralrimiva |
|- ( ph -> A. r e. RR+ E. n e. NN ( 2nd ` ( g ` n ) ) < r ) |
54 |
13 7 14 53
|
caubl |
|- ( ph -> ( 1st o. g ) e. ( Cau ` D ) ) |
55 |
1
|
cmetcau |
|- ( ( D e. ( CMet ` X ) /\ ( 1st o. g ) e. ( Cau ` D ) ) -> ( 1st o. g ) e. dom ( ~~>t ` J ) ) |
56 |
2 54 55
|
syl2anc |
|- ( ph -> ( 1st o. g ) e. dom ( ~~>t ` J ) ) |
57 |
|
fo1st |
|- 1st : _V -onto-> _V |
58 |
|
fofun |
|- ( 1st : _V -onto-> _V -> Fun 1st ) |
59 |
57 58
|
ax-mp |
|- Fun 1st |
60 |
|
vex |
|- g e. _V |
61 |
|
cofunexg |
|- ( ( Fun 1st /\ g e. _V ) -> ( 1st o. g ) e. _V ) |
62 |
59 60 61
|
mp2an |
|- ( 1st o. g ) e. _V |
63 |
62
|
eldm |
|- ( ( 1st o. g ) e. dom ( ~~>t ` J ) <-> E. x ( 1st o. g ) ( ~~>t ` J ) x ) |
64 |
56 63
|
sylib |
|- ( ph -> E. x ( 1st o. g ) ( ~~>t ` J ) x ) |
65 |
|
1nn |
|- 1 e. NN |
66 |
1 2 3 4 5 6 7 8 9
|
bcthlem3 |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ 1 e. NN ) -> x e. ( ( ball ` D ) ` ( g ` 1 ) ) ) |
67 |
65 66
|
mp3an3 |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> x e. ( ( ball ` D ) ` ( g ` 1 ) ) ) |
68 |
8
|
fveq2d |
|- ( ph -> ( ( ball ` D ) ` ( g ` 1 ) ) = ( ( ball ` D ) ` <. C , R >. ) ) |
69 |
|
df-ov |
|- ( C ( ball ` D ) R ) = ( ( ball ` D ) ` <. C , R >. ) |
70 |
68 69
|
eqtr4di |
|- ( ph -> ( ( ball ` D ) ` ( g ` 1 ) ) = ( C ( ball ` D ) R ) ) |
71 |
70
|
adantr |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> ( ( ball ` D ) ` ( g ` 1 ) ) = ( C ( ball ` D ) R ) ) |
72 |
67 71
|
eleqtrd |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> x e. ( C ( ball ` D ) R ) ) |
73 |
1
|
mopntop |
|- ( D e. ( *Met ` X ) -> J e. Top ) |
74 |
13 73
|
syl |
|- ( ph -> J e. Top ) |
75 |
74
|
adantr |
|- ( ( ph /\ m e. NN ) -> J e. Top ) |
76 |
13
|
adantr |
|- ( ( ph /\ m e. NN ) -> D e. ( *Met ` X ) ) |
77 |
|
xp1st |
|- ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) -> ( 1st ` ( g ` ( m + 1 ) ) ) e. X ) |
78 |
35 77
|
syl |
|- ( ( ph /\ m e. NN ) -> ( 1st ` ( g ` ( m + 1 ) ) ) e. X ) |
79 |
37
|
rpxrd |
|- ( ( ph /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR* ) |
80 |
|
blssm |
|- ( ( D e. ( *Met ` X ) /\ ( 1st ` ( g ` ( m + 1 ) ) ) e. X /\ ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR* ) -> ( ( 1st ` ( g ` ( m + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( m + 1 ) ) ) ) C_ X ) |
81 |
76 78 79 80
|
syl3anc |
|- ( ( ph /\ m e. NN ) -> ( ( 1st ` ( g ` ( m + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( m + 1 ) ) ) ) C_ X ) |
82 |
|
df-ov |
|- ( ( 1st ` ( g ` ( m + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( m + 1 ) ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( g ` ( m + 1 ) ) ) , ( 2nd ` ( g ` ( m + 1 ) ) ) >. ) |
83 |
|
1st2nd2 |
|- ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) -> ( g ` ( m + 1 ) ) = <. ( 1st ` ( g ` ( m + 1 ) ) ) , ( 2nd ` ( g ` ( m + 1 ) ) ) >. ) |
84 |
35 83
|
syl |
|- ( ( ph /\ m e. NN ) -> ( g ` ( m + 1 ) ) = <. ( 1st ` ( g ` ( m + 1 ) ) ) , ( 2nd ` ( g ` ( m + 1 ) ) ) >. ) |
85 |
84
|
fveq2d |
|- ( ( ph /\ m e. NN ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( g ` ( m + 1 ) ) ) , ( 2nd ` ( g ` ( m + 1 ) ) ) >. ) ) |
86 |
82 85
|
eqtr4id |
|- ( ( ph /\ m e. NN ) -> ( ( 1st ` ( g ` ( m + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( m + 1 ) ) ) ) = ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) |
87 |
1
|
mopnuni |
|- ( D e. ( *Met ` X ) -> X = U. J ) |
88 |
13 87
|
syl |
|- ( ph -> X = U. J ) |
89 |
88
|
adantr |
|- ( ( ph /\ m e. NN ) -> X = U. J ) |
90 |
81 86 89
|
3sstr3d |
|- ( ( ph /\ m e. NN ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ U. J ) |
91 |
|
eqid |
|- U. J = U. J |
92 |
91
|
sscls |
|- ( ( J e. Top /\ ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ U. J ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) ) |
93 |
75 90 92
|
syl2anc |
|- ( ( ph /\ m e. NN ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) ) |
94 |
32
|
simp3d |
|- ( ( ph /\ m e. NN ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) |
95 |
93 94
|
sstrd |
|- ( ( ph /\ m e. NN ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) |
96 |
95
|
3adant2 |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ m e. NN ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) |
97 |
1 2 3 4 5 6 7 8 9
|
bcthlem3 |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ ( m + 1 ) e. NN ) -> x e. ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) |
98 |
19 97
|
syl3an3 |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ m e. NN ) -> x e. ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) |
99 |
96 98
|
sseldd |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ m e. NN ) -> x e. ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) |
100 |
99
|
eldifbd |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ m e. NN ) -> -. x e. ( M ` m ) ) |
101 |
100
|
3expa |
|- ( ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) /\ m e. NN ) -> -. x e. ( M ` m ) ) |
102 |
101
|
ralrimiva |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> A. m e. NN -. x e. ( M ` m ) ) |
103 |
|
eluni2 |
|- ( x e. U. ran M <-> E. y e. ran M x e. y ) |
104 |
4
|
ffnd |
|- ( ph -> M Fn NN ) |
105 |
|
eleq2 |
|- ( y = ( M ` m ) -> ( x e. y <-> x e. ( M ` m ) ) ) |
106 |
105
|
rexrn |
|- ( M Fn NN -> ( E. y e. ran M x e. y <-> E. m e. NN x e. ( M ` m ) ) ) |
107 |
104 106
|
syl |
|- ( ph -> ( E. y e. ran M x e. y <-> E. m e. NN x e. ( M ` m ) ) ) |
108 |
103 107
|
syl5bb |
|- ( ph -> ( x e. U. ran M <-> E. m e. NN x e. ( M ` m ) ) ) |
109 |
108
|
notbid |
|- ( ph -> ( -. x e. U. ran M <-> -. E. m e. NN x e. ( M ` m ) ) ) |
110 |
|
ralnex |
|- ( A. m e. NN -. x e. ( M ` m ) <-> -. E. m e. NN x e. ( M ` m ) ) |
111 |
109 110
|
bitr4di |
|- ( ph -> ( -. x e. U. ran M <-> A. m e. NN -. x e. ( M ` m ) ) ) |
112 |
111
|
biimpar |
|- ( ( ph /\ A. m e. NN -. x e. ( M ` m ) ) -> -. x e. U. ran M ) |
113 |
102 112
|
syldan |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> -. x e. U. ran M ) |
114 |
72 113
|
eldifd |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> x e. ( ( C ( ball ` D ) R ) \ U. ran M ) ) |
115 |
114
|
ne0d |
|- ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> ( ( C ( ball ` D ) R ) \ U. ran M ) =/= (/) ) |
116 |
64 115
|
exlimddv |
|- ( ph -> ( ( C ( ball ` D ) R ) \ U. ran M ) =/= (/) ) |