| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) | 
						
							| 2 | 1 | eleq2d |  |-  ( n = N -> ( k e. ( 0 ... n ) <-> k e. ( 0 ... N ) ) ) | 
						
							| 3 |  | fveq2 |  |-  ( n = N -> ( ! ` n ) = ( ! ` N ) ) | 
						
							| 4 |  | fvoveq1 |  |-  ( n = N -> ( ! ` ( n - k ) ) = ( ! ` ( N - k ) ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( n = N -> ( ( ! ` ( n - k ) ) x. ( ! ` k ) ) = ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) ) | 
						
							| 6 | 3 5 | oveq12d |  |-  ( n = N -> ( ( ! ` n ) / ( ( ! ` ( n - k ) ) x. ( ! ` k ) ) ) = ( ( ! ` N ) / ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) ) ) | 
						
							| 7 | 2 6 | ifbieq1d |  |-  ( n = N -> if ( k e. ( 0 ... n ) , ( ( ! ` n ) / ( ( ! ` ( n - k ) ) x. ( ! ` k ) ) ) , 0 ) = if ( k e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) ) , 0 ) ) | 
						
							| 8 |  | eleq1 |  |-  ( k = K -> ( k e. ( 0 ... N ) <-> K e. ( 0 ... N ) ) ) | 
						
							| 9 |  | oveq2 |  |-  ( k = K -> ( N - k ) = ( N - K ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( k = K -> ( ! ` ( N - k ) ) = ( ! ` ( N - K ) ) ) | 
						
							| 11 |  | fveq2 |  |-  ( k = K -> ( ! ` k ) = ( ! ` K ) ) | 
						
							| 12 | 10 11 | oveq12d |  |-  ( k = K -> ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) = ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( k = K -> ( ( ! ` N ) / ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) | 
						
							| 14 | 8 13 | ifbieq1d |  |-  ( k = K -> if ( k e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) ) , 0 ) = if ( K e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) , 0 ) ) | 
						
							| 15 |  | df-bc |  |-  _C = ( n e. NN0 , k e. ZZ |-> if ( k e. ( 0 ... n ) , ( ( ! ` n ) / ( ( ! ` ( n - k ) ) x. ( ! ` k ) ) ) , 0 ) ) | 
						
							| 16 |  | ovex |  |-  ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) e. _V | 
						
							| 17 |  | c0ex |  |-  0 e. _V | 
						
							| 18 | 16 17 | ifex |  |-  if ( K e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) , 0 ) e. _V | 
						
							| 19 | 7 14 15 18 | ovmpo |  |-  ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) = if ( K e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) , 0 ) ) |