Step |
Hyp |
Ref |
Expression |
1 |
|
elfz3nn0 |
|- ( K e. ( 0 ... N ) -> N e. NN0 ) |
2 |
|
elfzelz |
|- ( K e. ( 0 ... N ) -> K e. ZZ ) |
3 |
|
bcval |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) = if ( K e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) , 0 ) ) |
4 |
1 2 3
|
syl2anc |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = if ( K e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) , 0 ) ) |
5 |
|
iftrue |
|- ( K e. ( 0 ... N ) -> if ( K e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) , 0 ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
6 |
4 5
|
eqtrd |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |