Step |
Hyp |
Ref |
Expression |
1 |
|
elfzle1 |
|- ( K e. ( 0 ... N ) -> 0 <_ K ) |
2 |
|
0re |
|- 0 e. RR |
3 |
|
elfzelz |
|- ( K e. ( 0 ... N ) -> K e. ZZ ) |
4 |
3
|
zred |
|- ( K e. ( 0 ... N ) -> K e. RR ) |
5 |
|
lenlt |
|- ( ( 0 e. RR /\ K e. RR ) -> ( 0 <_ K <-> -. K < 0 ) ) |
6 |
2 4 5
|
sylancr |
|- ( K e. ( 0 ... N ) -> ( 0 <_ K <-> -. K < 0 ) ) |
7 |
1 6
|
mpbid |
|- ( K e. ( 0 ... N ) -> -. K < 0 ) |
8 |
7
|
adantl |
|- ( ( N e. NN0 /\ K e. ( 0 ... N ) ) -> -. K < 0 ) |
9 |
|
elfzle2 |
|- ( K e. ( 0 ... N ) -> K <_ N ) |
10 |
9
|
adantl |
|- ( ( N e. NN0 /\ K e. ( 0 ... N ) ) -> K <_ N ) |
11 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
12 |
|
lenlt |
|- ( ( K e. RR /\ N e. RR ) -> ( K <_ N <-> -. N < K ) ) |
13 |
4 11 12
|
syl2anr |
|- ( ( N e. NN0 /\ K e. ( 0 ... N ) ) -> ( K <_ N <-> -. N < K ) ) |
14 |
10 13
|
mpbid |
|- ( ( N e. NN0 /\ K e. ( 0 ... N ) ) -> -. N < K ) |
15 |
|
ioran |
|- ( -. ( K < 0 \/ N < K ) <-> ( -. K < 0 /\ -. N < K ) ) |
16 |
8 14 15
|
sylanbrc |
|- ( ( N e. NN0 /\ K e. ( 0 ... N ) ) -> -. ( K < 0 \/ N < K ) ) |
17 |
16
|
ex |
|- ( N e. NN0 -> ( K e. ( 0 ... N ) -> -. ( K < 0 \/ N < K ) ) ) |
18 |
17
|
adantr |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( K e. ( 0 ... N ) -> -. ( K < 0 \/ N < K ) ) ) |
19 |
18
|
con2d |
|- ( ( N e. NN0 /\ K e. ZZ ) -> ( ( K < 0 \/ N < K ) -> -. K e. ( 0 ... N ) ) ) |
20 |
19
|
3impia |
|- ( ( N e. NN0 /\ K e. ZZ /\ ( K < 0 \/ N < K ) ) -> -. K e. ( 0 ... N ) ) |
21 |
|
bcval3 |
|- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
22 |
20 21
|
syld3an3 |
|- ( ( N e. NN0 /\ K e. ZZ /\ ( K < 0 \/ N < K ) ) -> ( N _C K ) = 0 ) |