| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcval2 |  |-  ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) | 
						
							| 3 |  | mulcl |  |-  ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) | 
						
							| 5 |  | mulass |  |-  ( ( k e. CC /\ x e. CC /\ y e. CC ) -> ( ( k x. x ) x. y ) = ( k x. ( x x. y ) ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) /\ ( k e. CC /\ x e. CC /\ y e. CC ) ) -> ( ( k x. x ) x. y ) = ( k x. ( x x. y ) ) ) | 
						
							| 7 |  | simplr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> K e. NN ) | 
						
							| 8 |  | elfzuz3 |  |-  ( K e. ( 0 ... N ) -> N e. ( ZZ>= ` K ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. ( ZZ>= ` K ) ) | 
						
							| 10 |  | eluznn |  |-  ( ( K e. NN /\ N e. ( ZZ>= ` K ) ) -> N e. NN ) | 
						
							| 11 | 7 9 10 | syl2anc |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. NN ) | 
						
							| 12 | 11 | adantrr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> N e. NN ) | 
						
							| 13 |  | simplr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> K e. NN ) | 
						
							| 14 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 15 |  | nnrp |  |-  ( K e. NN -> K e. RR+ ) | 
						
							| 16 |  | ltsubrp |  |-  ( ( N e. RR /\ K e. RR+ ) -> ( N - K ) < N ) | 
						
							| 17 | 14 15 16 | syl2an |  |-  ( ( N e. NN /\ K e. NN ) -> ( N - K ) < N ) | 
						
							| 18 | 12 13 17 | syl2anc |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) < N ) | 
						
							| 19 | 12 | nnzd |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> N e. ZZ ) | 
						
							| 20 |  | nnz |  |-  ( K e. NN -> K e. ZZ ) | 
						
							| 21 | 20 | ad2antlr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> K e. ZZ ) | 
						
							| 22 | 19 21 | zsubcld |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) e. ZZ ) | 
						
							| 23 |  | zltp1le |  |-  ( ( ( N - K ) e. ZZ /\ N e. ZZ ) -> ( ( N - K ) < N <-> ( ( N - K ) + 1 ) <_ N ) ) | 
						
							| 24 | 22 19 23 | syl2anc |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( N - K ) < N <-> ( ( N - K ) + 1 ) <_ N ) ) | 
						
							| 25 | 18 24 | mpbid |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( N - K ) + 1 ) <_ N ) | 
						
							| 26 | 22 | peano2zd |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( N - K ) + 1 ) e. ZZ ) | 
						
							| 27 |  | eluz |  |-  ( ( ( ( N - K ) + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) <-> ( ( N - K ) + 1 ) <_ N ) ) | 
						
							| 28 | 26 19 27 | syl2anc |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) <-> ( ( N - K ) + 1 ) <_ N ) ) | 
						
							| 29 | 25 28 | mpbird |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) ) | 
						
							| 30 |  | simprr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) e. NN ) | 
						
							| 31 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 32 | 30 31 | eleqtrdi |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) e. ( ZZ>= ` 1 ) ) | 
						
							| 33 |  | fvi |  |-  ( k e. ( 1 ... N ) -> ( _I ` k ) = k ) | 
						
							| 34 |  | elfzelz |  |-  ( k e. ( 1 ... N ) -> k e. ZZ ) | 
						
							| 35 | 34 | zcnd |  |-  ( k e. ( 1 ... N ) -> k e. CC ) | 
						
							| 36 | 33 35 | eqeltrd |  |-  ( k e. ( 1 ... N ) -> ( _I ` k ) e. CC ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) /\ k e. ( 1 ... N ) ) -> ( _I ` k ) e. CC ) | 
						
							| 38 | 4 6 29 32 37 | seqsplit |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( seq 1 ( x. , _I ) ` N ) = ( ( seq 1 ( x. , _I ) ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) | 
						
							| 39 |  | facnn |  |-  ( N e. NN -> ( ! ` N ) = ( seq 1 ( x. , _I ) ` N ) ) | 
						
							| 40 | 12 39 | syl |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ! ` N ) = ( seq 1 ( x. , _I ) ` N ) ) | 
						
							| 41 |  | facnn |  |-  ( ( N - K ) e. NN -> ( ! ` ( N - K ) ) = ( seq 1 ( x. , _I ) ` ( N - K ) ) ) | 
						
							| 42 | 30 41 | syl |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ! ` ( N - K ) ) = ( seq 1 ( x. , _I ) ` ( N - K ) ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) = ( ( seq 1 ( x. , _I ) ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) | 
						
							| 44 | 38 40 43 | 3eqtr4d |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) | 
						
							| 45 | 44 | expr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) e. NN -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) ) | 
						
							| 46 |  | simpll |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. NN0 ) | 
						
							| 47 |  | faccl |  |-  ( N e. NN0 -> ( ! ` N ) e. NN ) | 
						
							| 48 |  | nncn |  |-  ( ( ! ` N ) e. NN -> ( ! ` N ) e. CC ) | 
						
							| 49 | 46 47 48 | 3syl |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) e. CC ) | 
						
							| 50 | 49 | mullidd |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( 1 x. ( ! ` N ) ) = ( ! ` N ) ) | 
						
							| 51 | 11 39 | syl |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) = ( seq 1 ( x. , _I ) ` N ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( 1 x. ( ! ` N ) ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) | 
						
							| 53 | 50 52 | eqtr3d |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) | 
						
							| 54 |  | fveq2 |  |-  ( ( N - K ) = 0 -> ( ! ` ( N - K ) ) = ( ! ` 0 ) ) | 
						
							| 55 |  | fac0 |  |-  ( ! ` 0 ) = 1 | 
						
							| 56 | 54 55 | eqtrdi |  |-  ( ( N - K ) = 0 -> ( ! ` ( N - K ) ) = 1 ) | 
						
							| 57 |  | oveq1 |  |-  ( ( N - K ) = 0 -> ( ( N - K ) + 1 ) = ( 0 + 1 ) ) | 
						
							| 58 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 59 | 57 58 | eqtrdi |  |-  ( ( N - K ) = 0 -> ( ( N - K ) + 1 ) = 1 ) | 
						
							| 60 | 59 | seqeq1d |  |-  ( ( N - K ) = 0 -> seq ( ( N - K ) + 1 ) ( x. , _I ) = seq 1 ( x. , _I ) ) | 
						
							| 61 | 60 | fveq1d |  |-  ( ( N - K ) = 0 -> ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) = ( seq 1 ( x. , _I ) ` N ) ) | 
						
							| 62 | 56 61 | oveq12d |  |-  ( ( N - K ) = 0 -> ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) | 
						
							| 63 | 62 | eqeq2d |  |-  ( ( N - K ) = 0 -> ( ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) <-> ( ! ` N ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) ) | 
						
							| 64 | 53 63 | syl5ibrcom |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) = 0 -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) ) | 
						
							| 65 |  | fznn0sub |  |-  ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N - K ) e. NN0 ) | 
						
							| 67 |  | elnn0 |  |-  ( ( N - K ) e. NN0 <-> ( ( N - K ) e. NN \/ ( N - K ) = 0 ) ) | 
						
							| 68 | 66 67 | sylib |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) e. NN \/ ( N - K ) = 0 ) ) | 
						
							| 69 | 45 64 68 | mpjaod |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) | 
						
							| 70 | 69 | oveq1d |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) | 
						
							| 71 |  | eqid |  |-  ( ZZ>= ` ( ( N - K ) + 1 ) ) = ( ZZ>= ` ( ( N - K ) + 1 ) ) | 
						
							| 72 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 73 |  | zsubcl |  |-  ( ( N e. ZZ /\ K e. ZZ ) -> ( N - K ) e. ZZ ) | 
						
							| 74 | 72 20 73 | syl2an |  |-  ( ( N e. NN0 /\ K e. NN ) -> ( N - K ) e. ZZ ) | 
						
							| 75 | 74 | peano2zd |  |-  ( ( N e. NN0 /\ K e. NN ) -> ( ( N - K ) + 1 ) e. ZZ ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) e. ZZ ) | 
						
							| 77 |  | fvi |  |-  ( k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) -> ( _I ` k ) = k ) | 
						
							| 78 |  | eluzelcn |  |-  ( k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) -> k e. CC ) | 
						
							| 79 | 77 78 | eqeltrd |  |-  ( k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) -> ( _I ` k ) e. CC ) | 
						
							| 80 | 79 | adantl |  |-  ( ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) /\ k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) ) -> ( _I ` k ) e. CC ) | 
						
							| 81 | 3 | adantl |  |-  ( ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) | 
						
							| 82 | 71 76 80 81 | seqf |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> seq ( ( N - K ) + 1 ) ( x. , _I ) : ( ZZ>= ` ( ( N - K ) + 1 ) ) --> CC ) | 
						
							| 83 | 11 7 17 | syl2anc |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N - K ) < N ) | 
						
							| 84 | 74 | adantr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N - K ) e. ZZ ) | 
						
							| 85 | 11 | nnzd |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. ZZ ) | 
						
							| 86 | 84 85 23 | syl2anc |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) < N <-> ( ( N - K ) + 1 ) <_ N ) ) | 
						
							| 87 | 83 86 | mpbid |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) <_ N ) | 
						
							| 88 | 76 85 27 | syl2anc |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) <-> ( ( N - K ) + 1 ) <_ N ) ) | 
						
							| 89 | 87 88 | mpbird |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) ) | 
						
							| 90 | 82 89 | ffvelcdmd |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) e. CC ) | 
						
							| 91 |  | elfznn0 |  |-  ( K e. ( 0 ... N ) -> K e. NN0 ) | 
						
							| 92 | 91 | adantl |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> K e. NN0 ) | 
						
							| 93 | 92 | faccld |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` K ) e. NN ) | 
						
							| 94 | 93 | nncnd |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` K ) e. CC ) | 
						
							| 95 | 66 | faccld |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` ( N - K ) ) e. NN ) | 
						
							| 96 | 95 | nncnd |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` ( N - K ) ) e. CC ) | 
						
							| 97 | 93 | nnne0d |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` K ) =/= 0 ) | 
						
							| 98 | 95 | nnne0d |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` ( N - K ) ) =/= 0 ) | 
						
							| 99 | 90 94 96 97 98 | divcan5d |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) | 
						
							| 100 | 2 70 99 | 3eqtrd |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N _C K ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) | 
						
							| 101 |  | nnnn0 |  |-  ( K e. NN -> K e. NN0 ) | 
						
							| 102 | 101 | ad2antlr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> K e. NN0 ) | 
						
							| 103 |  | faccl |  |-  ( K e. NN0 -> ( ! ` K ) e. NN ) | 
						
							| 104 |  | nncn |  |-  ( ( ! ` K ) e. NN -> ( ! ` K ) e. CC ) | 
						
							| 105 |  | nnne0 |  |-  ( ( ! ` K ) e. NN -> ( ! ` K ) =/= 0 ) | 
						
							| 106 | 104 105 | div0d |  |-  ( ( ! ` K ) e. NN -> ( 0 / ( ! ` K ) ) = 0 ) | 
						
							| 107 | 102 103 106 | 3syl |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( 0 / ( ! ` K ) ) = 0 ) | 
						
							| 108 | 3 | adantl |  |-  ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) | 
						
							| 109 |  | fvi |  |-  ( k e. ( ( ( N - K ) + 1 ) ... N ) -> ( _I ` k ) = k ) | 
						
							| 110 |  | elfzelz |  |-  ( k e. ( ( ( N - K ) + 1 ) ... N ) -> k e. ZZ ) | 
						
							| 111 | 110 | zcnd |  |-  ( k e. ( ( ( N - K ) + 1 ) ... N ) -> k e. CC ) | 
						
							| 112 | 109 111 | eqeltrd |  |-  ( k e. ( ( ( N - K ) + 1 ) ... N ) -> ( _I ` k ) e. CC ) | 
						
							| 113 | 112 | adantl |  |-  ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ k e. ( ( ( N - K ) + 1 ) ... N ) ) -> ( _I ` k ) e. CC ) | 
						
							| 114 |  | mul02 |  |-  ( k e. CC -> ( 0 x. k ) = 0 ) | 
						
							| 115 | 114 | adantl |  |-  ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ k e. CC ) -> ( 0 x. k ) = 0 ) | 
						
							| 116 |  | mul01 |  |-  ( k e. CC -> ( k x. 0 ) = 0 ) | 
						
							| 117 | 116 | adantl |  |-  ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ k e. CC ) -> ( k x. 0 ) = 0 ) | 
						
							| 118 | 75 | adantr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) e. ZZ ) | 
						
							| 119 | 72 | ad2antrr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> N e. ZZ ) | 
						
							| 120 |  | 0zd |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> 0 e. ZZ ) | 
						
							| 121 |  | simpr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> -. K e. ( 0 ... N ) ) | 
						
							| 122 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 123 | 102 122 | eleqtrdi |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> K e. ( ZZ>= ` 0 ) ) | 
						
							| 124 |  | elfz5 |  |-  ( ( K e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( K e. ( 0 ... N ) <-> K <_ N ) ) | 
						
							| 125 | 123 119 124 | syl2anc |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( K e. ( 0 ... N ) <-> K <_ N ) ) | 
						
							| 126 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 127 | 126 | ad2antrr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> N e. RR ) | 
						
							| 128 |  | nnre |  |-  ( K e. NN -> K e. RR ) | 
						
							| 129 | 128 | ad2antlr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> K e. RR ) | 
						
							| 130 | 127 129 | subge0d |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( 0 <_ ( N - K ) <-> K <_ N ) ) | 
						
							| 131 | 125 130 | bitr4d |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( K e. ( 0 ... N ) <-> 0 <_ ( N - K ) ) ) | 
						
							| 132 | 121 131 | mtbid |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> -. 0 <_ ( N - K ) ) | 
						
							| 133 | 74 | adantr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N - K ) e. ZZ ) | 
						
							| 134 | 133 | zred |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N - K ) e. RR ) | 
						
							| 135 |  | 0re |  |-  0 e. RR | 
						
							| 136 |  | ltnle |  |-  ( ( ( N - K ) e. RR /\ 0 e. RR ) -> ( ( N - K ) < 0 <-> -. 0 <_ ( N - K ) ) ) | 
						
							| 137 | 134 135 136 | sylancl |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) < 0 <-> -. 0 <_ ( N - K ) ) ) | 
						
							| 138 | 132 137 | mpbird |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N - K ) < 0 ) | 
						
							| 139 |  | 0z |  |-  0 e. ZZ | 
						
							| 140 |  | zltp1le |  |-  ( ( ( N - K ) e. ZZ /\ 0 e. ZZ ) -> ( ( N - K ) < 0 <-> ( ( N - K ) + 1 ) <_ 0 ) ) | 
						
							| 141 | 133 139 140 | sylancl |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) < 0 <-> ( ( N - K ) + 1 ) <_ 0 ) ) | 
						
							| 142 | 138 141 | mpbid |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) <_ 0 ) | 
						
							| 143 |  | nn0ge0 |  |-  ( N e. NN0 -> 0 <_ N ) | 
						
							| 144 | 143 | ad2antrr |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> 0 <_ N ) | 
						
							| 145 | 118 119 120 142 144 | elfzd |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> 0 e. ( ( ( N - K ) + 1 ) ... N ) ) | 
						
							| 146 |  | simpll |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> N e. NN0 ) | 
						
							| 147 |  | 0cn |  |-  0 e. CC | 
						
							| 148 |  | fvi |  |-  ( 0 e. CC -> ( _I ` 0 ) = 0 ) | 
						
							| 149 | 147 148 | mp1i |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( _I ` 0 ) = 0 ) | 
						
							| 150 | 108 113 115 117 145 146 149 | seqz |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) = 0 ) | 
						
							| 151 | 150 | oveq1d |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) = ( 0 / ( ! ` K ) ) ) | 
						
							| 152 |  | bcval3 |  |-  ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) | 
						
							| 153 | 20 152 | syl3an2 |  |-  ( ( N e. NN0 /\ K e. NN /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) | 
						
							| 154 | 153 | 3expa |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) | 
						
							| 155 | 107 151 154 | 3eqtr4rd |  |-  ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) | 
						
							| 156 | 100 155 | pm2.61dan |  |-  ( ( N e. NN0 /\ K e. NN ) -> ( N _C K ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) |