Step |
Hyp |
Ref |
Expression |
1 |
|
bcval2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
2 |
1
|
adantl |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
3 |
|
mulcl |
|- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
4 |
3
|
adantl |
|- ( ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
5 |
|
mulass |
|- ( ( k e. CC /\ x e. CC /\ y e. CC ) -> ( ( k x. x ) x. y ) = ( k x. ( x x. y ) ) ) |
6 |
5
|
adantl |
|- ( ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) /\ ( k e. CC /\ x e. CC /\ y e. CC ) ) -> ( ( k x. x ) x. y ) = ( k x. ( x x. y ) ) ) |
7 |
|
simplr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> K e. NN ) |
8 |
|
elfzuz3 |
|- ( K e. ( 0 ... N ) -> N e. ( ZZ>= ` K ) ) |
9 |
8
|
adantl |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. ( ZZ>= ` K ) ) |
10 |
|
eluznn |
|- ( ( K e. NN /\ N e. ( ZZ>= ` K ) ) -> N e. NN ) |
11 |
7 9 10
|
syl2anc |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. NN ) |
12 |
11
|
adantrr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> N e. NN ) |
13 |
|
simplr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> K e. NN ) |
14 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
15 |
|
nnrp |
|- ( K e. NN -> K e. RR+ ) |
16 |
|
ltsubrp |
|- ( ( N e. RR /\ K e. RR+ ) -> ( N - K ) < N ) |
17 |
14 15 16
|
syl2an |
|- ( ( N e. NN /\ K e. NN ) -> ( N - K ) < N ) |
18 |
12 13 17
|
syl2anc |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) < N ) |
19 |
12
|
nnzd |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> N e. ZZ ) |
20 |
|
nnz |
|- ( K e. NN -> K e. ZZ ) |
21 |
20
|
ad2antlr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> K e. ZZ ) |
22 |
19 21
|
zsubcld |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) e. ZZ ) |
23 |
|
zltp1le |
|- ( ( ( N - K ) e. ZZ /\ N e. ZZ ) -> ( ( N - K ) < N <-> ( ( N - K ) + 1 ) <_ N ) ) |
24 |
22 19 23
|
syl2anc |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( N - K ) < N <-> ( ( N - K ) + 1 ) <_ N ) ) |
25 |
18 24
|
mpbid |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( N - K ) + 1 ) <_ N ) |
26 |
22
|
peano2zd |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( N - K ) + 1 ) e. ZZ ) |
27 |
|
eluz |
|- ( ( ( ( N - K ) + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) <-> ( ( N - K ) + 1 ) <_ N ) ) |
28 |
26 19 27
|
syl2anc |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) <-> ( ( N - K ) + 1 ) <_ N ) ) |
29 |
25 28
|
mpbird |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) ) |
30 |
|
simprr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) e. NN ) |
31 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
32 |
30 31
|
eleqtrdi |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) e. ( ZZ>= ` 1 ) ) |
33 |
|
fvi |
|- ( k e. ( 1 ... N ) -> ( _I ` k ) = k ) |
34 |
|
elfzelz |
|- ( k e. ( 1 ... N ) -> k e. ZZ ) |
35 |
34
|
zcnd |
|- ( k e. ( 1 ... N ) -> k e. CC ) |
36 |
33 35
|
eqeltrd |
|- ( k e. ( 1 ... N ) -> ( _I ` k ) e. CC ) |
37 |
36
|
adantl |
|- ( ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) /\ k e. ( 1 ... N ) ) -> ( _I ` k ) e. CC ) |
38 |
4 6 29 32 37
|
seqsplit |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( seq 1 ( x. , _I ) ` N ) = ( ( seq 1 ( x. , _I ) ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) |
39 |
|
facnn |
|- ( N e. NN -> ( ! ` N ) = ( seq 1 ( x. , _I ) ` N ) ) |
40 |
12 39
|
syl |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ! ` N ) = ( seq 1 ( x. , _I ) ` N ) ) |
41 |
|
facnn |
|- ( ( N - K ) e. NN -> ( ! ` ( N - K ) ) = ( seq 1 ( x. , _I ) ` ( N - K ) ) ) |
42 |
30 41
|
syl |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ! ` ( N - K ) ) = ( seq 1 ( x. , _I ) ` ( N - K ) ) ) |
43 |
42
|
oveq1d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) = ( ( seq 1 ( x. , _I ) ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) |
44 |
38 40 43
|
3eqtr4d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) |
45 |
44
|
expr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) e. NN -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) ) |
46 |
|
simpll |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. NN0 ) |
47 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
48 |
|
nncn |
|- ( ( ! ` N ) e. NN -> ( ! ` N ) e. CC ) |
49 |
46 47 48
|
3syl |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) e. CC ) |
50 |
49
|
mulid2d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( 1 x. ( ! ` N ) ) = ( ! ` N ) ) |
51 |
11 39
|
syl |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) = ( seq 1 ( x. , _I ) ` N ) ) |
52 |
51
|
oveq2d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( 1 x. ( ! ` N ) ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) |
53 |
50 52
|
eqtr3d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) |
54 |
|
fveq2 |
|- ( ( N - K ) = 0 -> ( ! ` ( N - K ) ) = ( ! ` 0 ) ) |
55 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
56 |
54 55
|
eqtrdi |
|- ( ( N - K ) = 0 -> ( ! ` ( N - K ) ) = 1 ) |
57 |
|
oveq1 |
|- ( ( N - K ) = 0 -> ( ( N - K ) + 1 ) = ( 0 + 1 ) ) |
58 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
59 |
57 58
|
eqtrdi |
|- ( ( N - K ) = 0 -> ( ( N - K ) + 1 ) = 1 ) |
60 |
59
|
seqeq1d |
|- ( ( N - K ) = 0 -> seq ( ( N - K ) + 1 ) ( x. , _I ) = seq 1 ( x. , _I ) ) |
61 |
60
|
fveq1d |
|- ( ( N - K ) = 0 -> ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) = ( seq 1 ( x. , _I ) ` N ) ) |
62 |
56 61
|
oveq12d |
|- ( ( N - K ) = 0 -> ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) |
63 |
62
|
eqeq2d |
|- ( ( N - K ) = 0 -> ( ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) <-> ( ! ` N ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) ) |
64 |
53 63
|
syl5ibrcom |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) = 0 -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) ) |
65 |
|
fznn0sub |
|- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
66 |
65
|
adantl |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N - K ) e. NN0 ) |
67 |
|
elnn0 |
|- ( ( N - K ) e. NN0 <-> ( ( N - K ) e. NN \/ ( N - K ) = 0 ) ) |
68 |
66 67
|
sylib |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) e. NN \/ ( N - K ) = 0 ) ) |
69 |
45 64 68
|
mpjaod |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) |
70 |
69
|
oveq1d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
71 |
|
eqid |
|- ( ZZ>= ` ( ( N - K ) + 1 ) ) = ( ZZ>= ` ( ( N - K ) + 1 ) ) |
72 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
73 |
|
zsubcl |
|- ( ( N e. ZZ /\ K e. ZZ ) -> ( N - K ) e. ZZ ) |
74 |
72 20 73
|
syl2an |
|- ( ( N e. NN0 /\ K e. NN ) -> ( N - K ) e. ZZ ) |
75 |
74
|
peano2zd |
|- ( ( N e. NN0 /\ K e. NN ) -> ( ( N - K ) + 1 ) e. ZZ ) |
76 |
75
|
adantr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) e. ZZ ) |
77 |
|
fvi |
|- ( k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) -> ( _I ` k ) = k ) |
78 |
|
eluzelcn |
|- ( k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) -> k e. CC ) |
79 |
77 78
|
eqeltrd |
|- ( k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) -> ( _I ` k ) e. CC ) |
80 |
79
|
adantl |
|- ( ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) /\ k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) ) -> ( _I ` k ) e. CC ) |
81 |
3
|
adantl |
|- ( ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
82 |
71 76 80 81
|
seqf |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> seq ( ( N - K ) + 1 ) ( x. , _I ) : ( ZZ>= ` ( ( N - K ) + 1 ) ) --> CC ) |
83 |
11 7 17
|
syl2anc |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N - K ) < N ) |
84 |
74
|
adantr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N - K ) e. ZZ ) |
85 |
11
|
nnzd |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. ZZ ) |
86 |
84 85 23
|
syl2anc |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) < N <-> ( ( N - K ) + 1 ) <_ N ) ) |
87 |
83 86
|
mpbid |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) <_ N ) |
88 |
76 85 27
|
syl2anc |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) <-> ( ( N - K ) + 1 ) <_ N ) ) |
89 |
87 88
|
mpbird |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) ) |
90 |
82 89
|
ffvelrnd |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) e. CC ) |
91 |
|
elfznn0 |
|- ( K e. ( 0 ... N ) -> K e. NN0 ) |
92 |
91
|
adantl |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> K e. NN0 ) |
93 |
92
|
faccld |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` K ) e. NN ) |
94 |
93
|
nncnd |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` K ) e. CC ) |
95 |
66
|
faccld |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` ( N - K ) ) e. NN ) |
96 |
95
|
nncnd |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` ( N - K ) ) e. CC ) |
97 |
93
|
nnne0d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` K ) =/= 0 ) |
98 |
95
|
nnne0d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` ( N - K ) ) =/= 0 ) |
99 |
90 94 96 97 98
|
divcan5d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) |
100 |
2 70 99
|
3eqtrd |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N _C K ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) |
101 |
|
nnnn0 |
|- ( K e. NN -> K e. NN0 ) |
102 |
101
|
ad2antlr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> K e. NN0 ) |
103 |
|
faccl |
|- ( K e. NN0 -> ( ! ` K ) e. NN ) |
104 |
|
nncn |
|- ( ( ! ` K ) e. NN -> ( ! ` K ) e. CC ) |
105 |
|
nnne0 |
|- ( ( ! ` K ) e. NN -> ( ! ` K ) =/= 0 ) |
106 |
104 105
|
div0d |
|- ( ( ! ` K ) e. NN -> ( 0 / ( ! ` K ) ) = 0 ) |
107 |
102 103 106
|
3syl |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( 0 / ( ! ` K ) ) = 0 ) |
108 |
3
|
adantl |
|- ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
109 |
|
fvi |
|- ( k e. ( ( ( N - K ) + 1 ) ... N ) -> ( _I ` k ) = k ) |
110 |
|
elfzelz |
|- ( k e. ( ( ( N - K ) + 1 ) ... N ) -> k e. ZZ ) |
111 |
110
|
zcnd |
|- ( k e. ( ( ( N - K ) + 1 ) ... N ) -> k e. CC ) |
112 |
109 111
|
eqeltrd |
|- ( k e. ( ( ( N - K ) + 1 ) ... N ) -> ( _I ` k ) e. CC ) |
113 |
112
|
adantl |
|- ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ k e. ( ( ( N - K ) + 1 ) ... N ) ) -> ( _I ` k ) e. CC ) |
114 |
|
mul02 |
|- ( k e. CC -> ( 0 x. k ) = 0 ) |
115 |
114
|
adantl |
|- ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ k e. CC ) -> ( 0 x. k ) = 0 ) |
116 |
|
mul01 |
|- ( k e. CC -> ( k x. 0 ) = 0 ) |
117 |
116
|
adantl |
|- ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ k e. CC ) -> ( k x. 0 ) = 0 ) |
118 |
75
|
adantr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) e. ZZ ) |
119 |
72
|
ad2antrr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> N e. ZZ ) |
120 |
|
0zd |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> 0 e. ZZ ) |
121 |
|
simpr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> -. K e. ( 0 ... N ) ) |
122 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
123 |
102 122
|
eleqtrdi |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> K e. ( ZZ>= ` 0 ) ) |
124 |
|
elfz5 |
|- ( ( K e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( K e. ( 0 ... N ) <-> K <_ N ) ) |
125 |
123 119 124
|
syl2anc |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( K e. ( 0 ... N ) <-> K <_ N ) ) |
126 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
127 |
126
|
ad2antrr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> N e. RR ) |
128 |
|
nnre |
|- ( K e. NN -> K e. RR ) |
129 |
128
|
ad2antlr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> K e. RR ) |
130 |
127 129
|
subge0d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( 0 <_ ( N - K ) <-> K <_ N ) ) |
131 |
125 130
|
bitr4d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( K e. ( 0 ... N ) <-> 0 <_ ( N - K ) ) ) |
132 |
121 131
|
mtbid |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> -. 0 <_ ( N - K ) ) |
133 |
74
|
adantr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N - K ) e. ZZ ) |
134 |
133
|
zred |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N - K ) e. RR ) |
135 |
|
0re |
|- 0 e. RR |
136 |
|
ltnle |
|- ( ( ( N - K ) e. RR /\ 0 e. RR ) -> ( ( N - K ) < 0 <-> -. 0 <_ ( N - K ) ) ) |
137 |
134 135 136
|
sylancl |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) < 0 <-> -. 0 <_ ( N - K ) ) ) |
138 |
132 137
|
mpbird |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N - K ) < 0 ) |
139 |
|
0z |
|- 0 e. ZZ |
140 |
|
zltp1le |
|- ( ( ( N - K ) e. ZZ /\ 0 e. ZZ ) -> ( ( N - K ) < 0 <-> ( ( N - K ) + 1 ) <_ 0 ) ) |
141 |
133 139 140
|
sylancl |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) < 0 <-> ( ( N - K ) + 1 ) <_ 0 ) ) |
142 |
138 141
|
mpbid |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) <_ 0 ) |
143 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
144 |
143
|
ad2antrr |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> 0 <_ N ) |
145 |
118 119 120 142 144
|
elfzd |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> 0 e. ( ( ( N - K ) + 1 ) ... N ) ) |
146 |
|
simpll |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> N e. NN0 ) |
147 |
|
0cn |
|- 0 e. CC |
148 |
|
fvi |
|- ( 0 e. CC -> ( _I ` 0 ) = 0 ) |
149 |
147 148
|
mp1i |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( _I ` 0 ) = 0 ) |
150 |
108 113 115 117 145 146 149
|
seqz |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) = 0 ) |
151 |
150
|
oveq1d |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) = ( 0 / ( ! ` K ) ) ) |
152 |
|
bcval3 |
|- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
153 |
20 152
|
syl3an2 |
|- ( ( N e. NN0 /\ K e. NN /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
154 |
153
|
3expa |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
155 |
107 151 154
|
3eqtr4rd |
|- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) |
156 |
100 155
|
pm2.61dan |
|- ( ( N e. NN0 /\ K e. NN ) -> ( N _C K ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) |