| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bcxmaslem1 |
|- ( m = 0 -> ( ( ( N + 1 ) + m ) _C m ) = ( ( ( N + 1 ) + 0 ) _C 0 ) ) |
| 2 |
|
oveq2 |
|- ( m = 0 -> ( 0 ... m ) = ( 0 ... 0 ) ) |
| 3 |
2
|
sumeq1d |
|- ( m = 0 -> sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) = sum_ j e. ( 0 ... 0 ) ( ( N + j ) _C j ) ) |
| 4 |
1 3
|
eqeq12d |
|- ( m = 0 -> ( ( ( ( N + 1 ) + m ) _C m ) = sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) <-> ( ( ( N + 1 ) + 0 ) _C 0 ) = sum_ j e. ( 0 ... 0 ) ( ( N + j ) _C j ) ) ) |
| 5 |
|
bcxmaslem1 |
|- ( m = k -> ( ( ( N + 1 ) + m ) _C m ) = ( ( ( N + 1 ) + k ) _C k ) ) |
| 6 |
|
oveq2 |
|- ( m = k -> ( 0 ... m ) = ( 0 ... k ) ) |
| 7 |
6
|
sumeq1d |
|- ( m = k -> sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) |
| 8 |
5 7
|
eqeq12d |
|- ( m = k -> ( ( ( ( N + 1 ) + m ) _C m ) = sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) <-> ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) ) |
| 9 |
|
bcxmaslem1 |
|- ( m = ( k + 1 ) -> ( ( ( N + 1 ) + m ) _C m ) = ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) ) |
| 10 |
|
oveq2 |
|- ( m = ( k + 1 ) -> ( 0 ... m ) = ( 0 ... ( k + 1 ) ) ) |
| 11 |
10
|
sumeq1d |
|- ( m = ( k + 1 ) -> sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) = sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) ) |
| 12 |
9 11
|
eqeq12d |
|- ( m = ( k + 1 ) -> ( ( ( ( N + 1 ) + m ) _C m ) = sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) <-> ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) = sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) ) ) |
| 13 |
|
bcxmaslem1 |
|- ( m = M -> ( ( ( N + 1 ) + m ) _C m ) = ( ( ( N + 1 ) + M ) _C M ) ) |
| 14 |
|
oveq2 |
|- ( m = M -> ( 0 ... m ) = ( 0 ... M ) ) |
| 15 |
14
|
sumeq1d |
|- ( m = M -> sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) = sum_ j e. ( 0 ... M ) ( ( N + j ) _C j ) ) |
| 16 |
13 15
|
eqeq12d |
|- ( m = M -> ( ( ( ( N + 1 ) + m ) _C m ) = sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) <-> ( ( ( N + 1 ) + M ) _C M ) = sum_ j e. ( 0 ... M ) ( ( N + j ) _C j ) ) ) |
| 17 |
|
0nn0 |
|- 0 e. NN0 |
| 18 |
|
nn0addcl |
|- ( ( N e. NN0 /\ 0 e. NN0 ) -> ( N + 0 ) e. NN0 ) |
| 19 |
|
bcn0 |
|- ( ( N + 0 ) e. NN0 -> ( ( N + 0 ) _C 0 ) = 1 ) |
| 20 |
18 19
|
syl |
|- ( ( N e. NN0 /\ 0 e. NN0 ) -> ( ( N + 0 ) _C 0 ) = 1 ) |
| 21 |
17 20
|
mpan2 |
|- ( N e. NN0 -> ( ( N + 0 ) _C 0 ) = 1 ) |
| 22 |
|
0z |
|- 0 e. ZZ |
| 23 |
|
1nn0 |
|- 1 e. NN0 |
| 24 |
21 23
|
eqeltrdi |
|- ( N e. NN0 -> ( ( N + 0 ) _C 0 ) e. NN0 ) |
| 25 |
24
|
nn0cnd |
|- ( N e. NN0 -> ( ( N + 0 ) _C 0 ) e. CC ) |
| 26 |
|
bcxmaslem1 |
|- ( j = 0 -> ( ( N + j ) _C j ) = ( ( N + 0 ) _C 0 ) ) |
| 27 |
26
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( ( N + 0 ) _C 0 ) e. CC ) -> sum_ j e. ( 0 ... 0 ) ( ( N + j ) _C j ) = ( ( N + 0 ) _C 0 ) ) |
| 28 |
22 25 27
|
sylancr |
|- ( N e. NN0 -> sum_ j e. ( 0 ... 0 ) ( ( N + j ) _C j ) = ( ( N + 0 ) _C 0 ) ) |
| 29 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
| 30 |
|
nn0addcl |
|- ( ( ( N + 1 ) e. NN0 /\ 0 e. NN0 ) -> ( ( N + 1 ) + 0 ) e. NN0 ) |
| 31 |
29 17 30
|
sylancl |
|- ( N e. NN0 -> ( ( N + 1 ) + 0 ) e. NN0 ) |
| 32 |
|
bcn0 |
|- ( ( ( N + 1 ) + 0 ) e. NN0 -> ( ( ( N + 1 ) + 0 ) _C 0 ) = 1 ) |
| 33 |
31 32
|
syl |
|- ( N e. NN0 -> ( ( ( N + 1 ) + 0 ) _C 0 ) = 1 ) |
| 34 |
21 28 33
|
3eqtr4rd |
|- ( N e. NN0 -> ( ( ( N + 1 ) + 0 ) _C 0 ) = sum_ j e. ( 0 ... 0 ) ( ( N + j ) _C j ) ) |
| 35 |
|
simpr |
|- ( ( N e. NN0 /\ k e. NN0 ) -> k e. NN0 ) |
| 36 |
|
elnn0uz |
|- ( k e. NN0 <-> k e. ( ZZ>= ` 0 ) ) |
| 37 |
35 36
|
sylib |
|- ( ( N e. NN0 /\ k e. NN0 ) -> k e. ( ZZ>= ` 0 ) ) |
| 38 |
|
simpl |
|- ( ( N e. NN0 /\ k e. NN0 ) -> N e. NN0 ) |
| 39 |
|
elfznn0 |
|- ( j e. ( 0 ... ( k + 1 ) ) -> j e. NN0 ) |
| 40 |
|
nn0addcl |
|- ( ( N e. NN0 /\ j e. NN0 ) -> ( N + j ) e. NN0 ) |
| 41 |
38 39 40
|
syl2an |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ j e. ( 0 ... ( k + 1 ) ) ) -> ( N + j ) e. NN0 ) |
| 42 |
|
elfzelz |
|- ( j e. ( 0 ... ( k + 1 ) ) -> j e. ZZ ) |
| 43 |
42
|
adantl |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ j e. ( 0 ... ( k + 1 ) ) ) -> j e. ZZ ) |
| 44 |
|
bccl |
|- ( ( ( N + j ) e. NN0 /\ j e. ZZ ) -> ( ( N + j ) _C j ) e. NN0 ) |
| 45 |
41 43 44
|
syl2anc |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ j e. ( 0 ... ( k + 1 ) ) ) -> ( ( N + j ) _C j ) e. NN0 ) |
| 46 |
45
|
nn0cnd |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ j e. ( 0 ... ( k + 1 ) ) ) -> ( ( N + j ) _C j ) e. CC ) |
| 47 |
|
bcxmaslem1 |
|- ( j = ( k + 1 ) -> ( ( N + j ) _C j ) = ( ( N + ( k + 1 ) ) _C ( k + 1 ) ) ) |
| 48 |
37 46 47
|
fsump1 |
|- ( ( N e. NN0 /\ k e. NN0 ) -> sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( N + ( k + 1 ) ) _C ( k + 1 ) ) ) ) |
| 49 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 50 |
49
|
adantr |
|- ( ( N e. NN0 /\ k e. NN0 ) -> N e. CC ) |
| 51 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
| 52 |
51
|
adantl |
|- ( ( N e. NN0 /\ k e. NN0 ) -> k e. CC ) |
| 53 |
|
1cnd |
|- ( ( N e. NN0 /\ k e. NN0 ) -> 1 e. CC ) |
| 54 |
|
add32r |
|- ( ( N e. CC /\ k e. CC /\ 1 e. CC ) -> ( N + ( k + 1 ) ) = ( ( N + 1 ) + k ) ) |
| 55 |
50 52 53 54
|
syl3anc |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + ( k + 1 ) ) = ( ( N + 1 ) + k ) ) |
| 56 |
55
|
oveq1d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + ( k + 1 ) ) _C ( k + 1 ) ) = ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) |
| 57 |
56
|
oveq2d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( N + ( k + 1 ) ) _C ( k + 1 ) ) ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
| 58 |
48 57
|
eqtrd |
|- ( ( N e. NN0 /\ k e. NN0 ) -> sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
| 59 |
58
|
adantr |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) -> sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
| 60 |
|
oveq1 |
|- ( ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) -> ( ( ( ( N + 1 ) + k ) _C k ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
| 61 |
60
|
adantl |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) -> ( ( ( ( N + 1 ) + k ) _C k ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
| 62 |
|
ax-1cn |
|- 1 e. CC |
| 63 |
|
pncan |
|- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
| 64 |
52 62 63
|
sylancl |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( k + 1 ) - 1 ) = k ) |
| 65 |
64
|
oveq2d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C ( ( k + 1 ) - 1 ) ) = ( ( ( N + 1 ) + k ) _C k ) ) |
| 66 |
65
|
oveq2d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C ( ( k + 1 ) - 1 ) ) ) = ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C k ) ) ) |
| 67 |
|
nn0addcl |
|- ( ( ( N + 1 ) e. NN0 /\ k e. NN0 ) -> ( ( N + 1 ) + k ) e. NN0 ) |
| 68 |
29 67
|
sylan |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + 1 ) + k ) e. NN0 ) |
| 69 |
|
nn0p1nn |
|- ( k e. NN0 -> ( k + 1 ) e. NN ) |
| 70 |
69
|
adantl |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( k + 1 ) e. NN ) |
| 71 |
70
|
nnzd |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( k + 1 ) e. ZZ ) |
| 72 |
|
bcpasc |
|- ( ( ( ( N + 1 ) + k ) e. NN0 /\ ( k + 1 ) e. ZZ ) -> ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C ( ( k + 1 ) - 1 ) ) ) = ( ( ( ( N + 1 ) + k ) + 1 ) _C ( k + 1 ) ) ) |
| 73 |
68 71 72
|
syl2anc |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C ( ( k + 1 ) - 1 ) ) ) = ( ( ( ( N + 1 ) + k ) + 1 ) _C ( k + 1 ) ) ) |
| 74 |
66 73
|
eqtr3d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C k ) ) = ( ( ( ( N + 1 ) + k ) + 1 ) _C ( k + 1 ) ) ) |
| 75 |
|
nn0p1nn |
|- ( N e. NN0 -> ( N + 1 ) e. NN ) |
| 76 |
|
nnnn0addcl |
|- ( ( ( N + 1 ) e. NN /\ k e. NN0 ) -> ( ( N + 1 ) + k ) e. NN ) |
| 77 |
75 76
|
sylan |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + 1 ) + k ) e. NN ) |
| 78 |
77
|
nnnn0d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + 1 ) + k ) e. NN0 ) |
| 79 |
|
bccl |
|- ( ( ( ( N + 1 ) + k ) e. NN0 /\ ( k + 1 ) e. ZZ ) -> ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) e. NN0 ) |
| 80 |
78 71 79
|
syl2anc |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) e. NN0 ) |
| 81 |
80
|
nn0cnd |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) e. CC ) |
| 82 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
| 83 |
82
|
adantl |
|- ( ( ( N + 1 ) e. NN0 /\ k e. NN0 ) -> k e. ZZ ) |
| 84 |
|
bccl |
|- ( ( ( ( N + 1 ) + k ) e. NN0 /\ k e. ZZ ) -> ( ( ( N + 1 ) + k ) _C k ) e. NN0 ) |
| 85 |
67 83 84
|
syl2anc |
|- ( ( ( N + 1 ) e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C k ) e. NN0 ) |
| 86 |
29 85
|
sylan |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C k ) e. NN0 ) |
| 87 |
86
|
nn0cnd |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C k ) e. CC ) |
| 88 |
81 87
|
addcomd |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C k ) ) = ( ( ( ( N + 1 ) + k ) _C k ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
| 89 |
|
peano2cn |
|- ( N e. CC -> ( N + 1 ) e. CC ) |
| 90 |
49 89
|
syl |
|- ( N e. NN0 -> ( N + 1 ) e. CC ) |
| 91 |
90
|
adantr |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + 1 ) e. CC ) |
| 92 |
91 52 53
|
addassd |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) + 1 ) = ( ( N + 1 ) + ( k + 1 ) ) ) |
| 93 |
92
|
oveq1d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) + 1 ) _C ( k + 1 ) ) = ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) ) |
| 94 |
74 88 93
|
3eqtr3d |
|- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) _C k ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) = ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) ) |
| 95 |
94
|
adantr |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) -> ( ( ( ( N + 1 ) + k ) _C k ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) = ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) ) |
| 96 |
59 61 95
|
3eqtr2rd |
|- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) -> ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) = sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) ) |
| 97 |
4 8 12 16 34 96
|
nn0indd |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( ( N + 1 ) + M ) _C M ) = sum_ j e. ( 0 ... M ) ( ( N + j ) _C j ) ) |