Description: Lemma for bcxmas . (Contributed by Paul Chapman, 18-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcxmaslem1 | |- ( A = B -> ( ( N + A ) _C A ) = ( ( N + B ) _C B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq2 | |- ( A = B -> ( N + A ) = ( N + B ) ) | |
| 2 | id | |- ( A = B -> A = B ) | |
| 3 | 1 2 | oveq12d | |- ( A = B -> ( ( N + A ) _C A ) = ( ( N + B ) _C B ) ) |