| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbff |  |-  ( F e. MblFn -> F : dom F --> CC ) | 
						
							| 2 | 1 | ad2antrr |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> F : dom F --> CC ) | 
						
							| 3 | 2 | ffnd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> F Fn dom F ) | 
						
							| 4 |  | iblmbf |  |-  ( G e. L^1 -> G e. MblFn ) | 
						
							| 5 | 4 | ad2antlr |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> G e. MblFn ) | 
						
							| 6 |  | mbff |  |-  ( G e. MblFn -> G : dom G --> CC ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> G : dom G --> CC ) | 
						
							| 8 | 7 | ffnd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> G Fn dom G ) | 
						
							| 9 |  | mbfdm |  |-  ( F e. MblFn -> dom F e. dom vol ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> dom F e. dom vol ) | 
						
							| 11 |  | mbfdm |  |-  ( G e. MblFn -> dom G e. dom vol ) | 
						
							| 12 | 5 11 | syl |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> dom G e. dom vol ) | 
						
							| 13 |  | eqid |  |-  ( dom F i^i dom G ) = ( dom F i^i dom G ) | 
						
							| 14 |  | eqidd |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. dom F ) -> ( F ` z ) = ( F ` z ) ) | 
						
							| 15 |  | eqidd |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. dom G ) -> ( G ` z ) = ( G ` z ) ) | 
						
							| 16 | 3 8 10 12 13 14 15 | offval |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( F oF x. G ) = ( z e. ( dom F i^i dom G ) |-> ( ( F ` z ) x. ( G ` z ) ) ) ) | 
						
							| 17 |  | ovexd |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( ( F ` z ) x. ( G ` z ) ) e. _V ) | 
						
							| 18 |  | simpll |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> F e. MblFn ) | 
						
							| 19 | 18 5 | mbfmul |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( F oF x. G ) e. MblFn ) | 
						
							| 20 | 16 19 | eqeltrrd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. ( dom F i^i dom G ) |-> ( ( F ` z ) x. ( G ` z ) ) ) e. MblFn ) | 
						
							| 21 |  | absf |  |-  abs : CC --> RR | 
						
							| 22 | 21 | a1i |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> abs : CC --> RR ) | 
						
							| 23 | 20 17 | mbfmptcl |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( ( F ` z ) x. ( G ` z ) ) e. CC ) | 
						
							| 24 | 22 23 | cofmpt |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( abs o. ( z e. ( dom F i^i dom G ) |-> ( ( F ` z ) x. ( G ` z ) ) ) ) = ( z e. ( dom F i^i dom G ) |-> ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) ) ) | 
						
							| 25 | 23 | fmpttd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. ( dom F i^i dom G ) |-> ( ( F ` z ) x. ( G ` z ) ) ) : ( dom F i^i dom G ) --> CC ) | 
						
							| 26 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 27 |  | ssid |  |-  CC C_ CC | 
						
							| 28 |  | cncfss |  |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( CC -cn-> RR ) C_ ( CC -cn-> CC ) ) | 
						
							| 29 | 26 27 28 | mp2an |  |-  ( CC -cn-> RR ) C_ ( CC -cn-> CC ) | 
						
							| 30 |  | abscncf |  |-  abs e. ( CC -cn-> RR ) | 
						
							| 31 | 29 30 | sselii |  |-  abs e. ( CC -cn-> CC ) | 
						
							| 32 | 31 | a1i |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> abs e. ( CC -cn-> CC ) ) | 
						
							| 33 |  | cncombf |  |-  ( ( ( z e. ( dom F i^i dom G ) |-> ( ( F ` z ) x. ( G ` z ) ) ) e. MblFn /\ ( z e. ( dom F i^i dom G ) |-> ( ( F ` z ) x. ( G ` z ) ) ) : ( dom F i^i dom G ) --> CC /\ abs e. ( CC -cn-> CC ) ) -> ( abs o. ( z e. ( dom F i^i dom G ) |-> ( ( F ` z ) x. ( G ` z ) ) ) ) e. MblFn ) | 
						
							| 34 | 20 25 32 33 | syl3anc |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( abs o. ( z e. ( dom F i^i dom G ) |-> ( ( F ` z ) x. ( G ` z ) ) ) ) e. MblFn ) | 
						
							| 35 | 24 34 | eqeltrrd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. ( dom F i^i dom G ) |-> ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) ) e. MblFn ) | 
						
							| 36 | 23 | abscld |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) e. RR ) | 
						
							| 37 | 36 | rexrd |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) e. RR* ) | 
						
							| 38 | 23 | absge0d |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> 0 <_ ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) ) | 
						
							| 39 |  | elxrge0 |  |-  ( ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) e. ( 0 [,] +oo ) <-> ( ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) e. RR* /\ 0 <_ ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) ) ) | 
						
							| 40 | 37 38 39 | sylanbrc |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 41 |  | 0e0iccpnf |  |-  0 e. ( 0 [,] +oo ) | 
						
							| 42 | 41 | a1i |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. z e. ( dom F i^i dom G ) ) -> 0 e. ( 0 [,] +oo ) ) | 
						
							| 43 | 40 42 | ifclda |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) e. ( 0 [,] +oo ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. RR ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) e. ( 0 [,] +oo ) ) | 
						
							| 45 | 44 | fmpttd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 46 |  | reex |  |-  RR e. _V | 
						
							| 47 | 46 | a1i |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> RR e. _V ) | 
						
							| 48 |  | simprl |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> x e. RR ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) /\ z e. RR ) -> x e. RR ) | 
						
							| 50 |  | elinel2 |  |-  ( z e. ( dom F i^i dom G ) -> z e. dom G ) | 
						
							| 51 |  | ffvelcdm |  |-  ( ( G : dom G --> CC /\ z e. dom G ) -> ( G ` z ) e. CC ) | 
						
							| 52 | 7 50 51 | syl2an |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( G ` z ) e. CC ) | 
						
							| 53 | 52 | abscld |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( abs ` ( G ` z ) ) e. RR ) | 
						
							| 54 | 52 | absge0d |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> 0 <_ ( abs ` ( G ` z ) ) ) | 
						
							| 55 |  | elrege0 |  |-  ( ( abs ` ( G ` z ) ) e. ( 0 [,) +oo ) <-> ( ( abs ` ( G ` z ) ) e. RR /\ 0 <_ ( abs ` ( G ` z ) ) ) ) | 
						
							| 56 | 53 54 55 | sylanbrc |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( abs ` ( G ` z ) ) e. ( 0 [,) +oo ) ) | 
						
							| 57 |  | 0e0icopnf |  |-  0 e. ( 0 [,) +oo ) | 
						
							| 58 | 57 | a1i |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. z e. ( dom F i^i dom G ) ) -> 0 e. ( 0 [,) +oo ) ) | 
						
							| 59 | 56 58 | ifclda |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 60 | 59 | ad2antrr |  |-  ( ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) /\ z e. RR ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 61 |  | fconstmpt |  |-  ( RR X. { x } ) = ( z e. RR |-> x ) | 
						
							| 62 | 61 | a1i |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( RR X. { x } ) = ( z e. RR |-> x ) ) | 
						
							| 63 |  | eqidd |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) = ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) | 
						
							| 64 | 47 49 60 62 63 | offval2 |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( ( RR X. { x } ) oF x. ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) = ( z e. RR |-> ( x x. if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) ) | 
						
							| 65 |  | ovif2 |  |-  ( x x. if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) = if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , ( x x. 0 ) ) | 
						
							| 66 | 48 | recnd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> x e. CC ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> x e. CC ) | 
						
							| 68 | 67 | mul01d |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( x x. 0 ) = 0 ) | 
						
							| 69 | 68 | ifeq2d |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , ( x x. 0 ) ) = if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) | 
						
							| 70 | 65 69 | eqtrid |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( x x. if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) = if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) | 
						
							| 71 | 70 | mpteq2dv |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( z e. RR |-> ( x x. if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) = ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) | 
						
							| 72 | 64 71 | eqtrd |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( ( RR X. { x } ) oF x. ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) = ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) | 
						
							| 73 | 72 | fveq2d |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( S.2 ` ( ( RR X. { x } ) oF x. ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) ) = ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) ) | 
						
							| 74 | 59 | adantr |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. RR ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 75 | 74 | fmpttd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 77 |  | inss2 |  |-  ( dom F i^i dom G ) C_ dom G | 
						
							| 78 | 77 | a1i |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( dom F i^i dom G ) C_ dom G ) | 
						
							| 79 | 20 17 | mbfdm2 |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( dom F i^i dom G ) e. dom vol ) | 
						
							| 80 | 7 | ffvelcdmda |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. dom G ) -> ( G ` z ) e. CC ) | 
						
							| 81 | 7 | feqmptd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> G = ( z e. dom G |-> ( G ` z ) ) ) | 
						
							| 82 |  | simplr |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> G e. L^1 ) | 
						
							| 83 | 81 82 | eqeltrrd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. dom G |-> ( G ` z ) ) e. L^1 ) | 
						
							| 84 | 78 79 80 83 | iblss |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. ( dom F i^i dom G ) |-> ( G ` z ) ) e. L^1 ) | 
						
							| 85 | 52 84 | iblabs |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. ( dom F i^i dom G ) |-> ( abs ` ( G ` z ) ) ) e. L^1 ) | 
						
							| 86 | 53 54 | iblpos |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( ( z e. ( dom F i^i dom G ) |-> ( abs ` ( G ` z ) ) ) e. L^1 <-> ( ( z e. ( dom F i^i dom G ) |-> ( abs ` ( G ` z ) ) ) e. MblFn /\ ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) e. RR ) ) ) | 
						
							| 87 | 85 86 | mpbid |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( ( z e. ( dom F i^i dom G ) |-> ( abs ` ( G ` z ) ) ) e. MblFn /\ ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) e. RR ) ) | 
						
							| 88 | 87 | simprd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) e. RR ) | 
						
							| 89 | 88 | adantr |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) e. RR ) | 
						
							| 90 |  | simplrl |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> x e. RR ) | 
						
							| 91 |  | neq0 |  |-  ( -. ( dom F i^i dom G ) = (/) <-> E. z z e. ( dom F i^i dom G ) ) | 
						
							| 92 |  | 0re |  |-  0 e. RR | 
						
							| 93 | 92 | a1i |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> 0 e. RR ) | 
						
							| 94 |  | elinel1 |  |-  ( z e. ( dom F i^i dom G ) -> z e. dom F ) | 
						
							| 95 |  | ffvelcdm |  |-  ( ( F : dom F --> CC /\ z e. dom F ) -> ( F ` z ) e. CC ) | 
						
							| 96 | 2 94 95 | syl2an |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( F ` z ) e. CC ) | 
						
							| 97 | 96 | abscld |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( abs ` ( F ` z ) ) e. RR ) | 
						
							| 98 |  | simplrl |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> x e. RR ) | 
						
							| 99 | 96 | absge0d |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> 0 <_ ( abs ` ( F ` z ) ) ) | 
						
							| 100 |  | simprr |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) | 
						
							| 101 |  | 2fveq3 |  |-  ( y = z -> ( abs ` ( F ` y ) ) = ( abs ` ( F ` z ) ) ) | 
						
							| 102 | 101 | breq1d |  |-  ( y = z -> ( ( abs ` ( F ` y ) ) <_ x <-> ( abs ` ( F ` z ) ) <_ x ) ) | 
						
							| 103 | 102 | rspccva |  |-  ( ( A. y e. dom F ( abs ` ( F ` y ) ) <_ x /\ z e. dom F ) -> ( abs ` ( F ` z ) ) <_ x ) | 
						
							| 104 | 100 94 103 | syl2an |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( abs ` ( F ` z ) ) <_ x ) | 
						
							| 105 | 93 97 98 99 104 | letrd |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> 0 <_ x ) | 
						
							| 106 | 105 | ex |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. ( dom F i^i dom G ) -> 0 <_ x ) ) | 
						
							| 107 | 106 | exlimdv |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( E. z z e. ( dom F i^i dom G ) -> 0 <_ x ) ) | 
						
							| 108 | 91 107 | biimtrid |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( -. ( dom F i^i dom G ) = (/) -> 0 <_ x ) ) | 
						
							| 109 | 108 | imp |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> 0 <_ x ) | 
						
							| 110 |  | elrege0 |  |-  ( x e. ( 0 [,) +oo ) <-> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 111 | 90 109 110 | sylanbrc |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> x e. ( 0 [,) +oo ) ) | 
						
							| 112 | 76 89 111 | itg2mulc |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( S.2 ` ( ( RR X. { x } ) oF x. ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) ) = ( x x. ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) ) ) | 
						
							| 113 | 73 112 | eqtr3d |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) = ( x x. ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) ) ) | 
						
							| 114 | 90 89 | remulcld |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( x x. ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( G ` z ) ) , 0 ) ) ) ) e. RR ) | 
						
							| 115 | 113 114 | eqeltrd |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. ( dom F i^i dom G ) = (/) ) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) e. RR ) | 
						
							| 116 | 115 | ex |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( -. ( dom F i^i dom G ) = (/) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) e. RR ) ) | 
						
							| 117 |  | noel |  |-  -. z e. (/) | 
						
							| 118 |  | eleq2 |  |-  ( ( dom F i^i dom G ) = (/) -> ( z e. ( dom F i^i dom G ) <-> z e. (/) ) ) | 
						
							| 119 | 117 118 | mtbiri |  |-  ( ( dom F i^i dom G ) = (/) -> -. z e. ( dom F i^i dom G ) ) | 
						
							| 120 |  | iffalse |  |-  ( -. z e. ( dom F i^i dom G ) -> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) = 0 ) | 
						
							| 121 | 119 120 | syl |  |-  ( ( dom F i^i dom G ) = (/) -> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) = 0 ) | 
						
							| 122 | 121 | mpteq2dv |  |-  ( ( dom F i^i dom G ) = (/) -> ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) = ( z e. RR |-> 0 ) ) | 
						
							| 123 |  | fconstmpt |  |-  ( RR X. { 0 } ) = ( z e. RR |-> 0 ) | 
						
							| 124 | 122 123 | eqtr4di |  |-  ( ( dom F i^i dom G ) = (/) -> ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) = ( RR X. { 0 } ) ) | 
						
							| 125 | 124 | fveq2d |  |-  ( ( dom F i^i dom G ) = (/) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) = ( S.2 ` ( RR X. { 0 } ) ) ) | 
						
							| 126 |  | itg20 |  |-  ( S.2 ` ( RR X. { 0 } ) ) = 0 | 
						
							| 127 | 126 92 | eqeltri |  |-  ( S.2 ` ( RR X. { 0 } ) ) e. RR | 
						
							| 128 | 125 127 | eqeltrdi |  |-  ( ( dom F i^i dom G ) = (/) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) e. RR ) | 
						
							| 129 | 116 128 | pm2.61d2 |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) e. RR ) | 
						
							| 130 | 98 53 | remulcld |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( x x. ( abs ` ( G ` z ) ) ) e. RR ) | 
						
							| 131 | 130 | rexrd |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( x x. ( abs ` ( G ` z ) ) ) e. RR* ) | 
						
							| 132 | 98 53 105 54 | mulge0d |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> 0 <_ ( x x. ( abs ` ( G ` z ) ) ) ) | 
						
							| 133 |  | elxrge0 |  |-  ( ( x x. ( abs ` ( G ` z ) ) ) e. ( 0 [,] +oo ) <-> ( ( x x. ( abs ` ( G ` z ) ) ) e. RR* /\ 0 <_ ( x x. ( abs ` ( G ` z ) ) ) ) ) | 
						
							| 134 | 131 132 133 | sylanbrc |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( x x. ( abs ` ( G ` z ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 135 | 134 42 | ifclda |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) e. ( 0 [,] +oo ) ) | 
						
							| 136 | 135 | adantr |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. RR ) -> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) e. ( 0 [,] +oo ) ) | 
						
							| 137 | 136 | fmpttd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 138 | 96 52 | absmuld |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) = ( ( abs ` ( F ` z ) ) x. ( abs ` ( G ` z ) ) ) ) | 
						
							| 139 |  | abscl |  |-  ( ( G ` z ) e. CC -> ( abs ` ( G ` z ) ) e. RR ) | 
						
							| 140 |  | absge0 |  |-  ( ( G ` z ) e. CC -> 0 <_ ( abs ` ( G ` z ) ) ) | 
						
							| 141 | 139 140 | jca |  |-  ( ( G ` z ) e. CC -> ( ( abs ` ( G ` z ) ) e. RR /\ 0 <_ ( abs ` ( G ` z ) ) ) ) | 
						
							| 142 | 52 141 | syl |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( ( abs ` ( G ` z ) ) e. RR /\ 0 <_ ( abs ` ( G ` z ) ) ) ) | 
						
							| 143 |  | lemul1a |  |-  ( ( ( ( abs ` ( F ` z ) ) e. RR /\ x e. RR /\ ( ( abs ` ( G ` z ) ) e. RR /\ 0 <_ ( abs ` ( G ` z ) ) ) ) /\ ( abs ` ( F ` z ) ) <_ x ) -> ( ( abs ` ( F ` z ) ) x. ( abs ` ( G ` z ) ) ) <_ ( x x. ( abs ` ( G ` z ) ) ) ) | 
						
							| 144 | 97 98 142 104 143 | syl31anc |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( ( abs ` ( F ` z ) ) x. ( abs ` ( G ` z ) ) ) <_ ( x x. ( abs ` ( G ` z ) ) ) ) | 
						
							| 145 | 138 144 | eqbrtrd |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) <_ ( x x. ( abs ` ( G ` z ) ) ) ) | 
						
							| 146 |  | iftrue |  |-  ( z e. ( dom F i^i dom G ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) = ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) ) | 
						
							| 147 | 146 | adantl |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) = ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) ) | 
						
							| 148 |  | iftrue |  |-  ( z e. ( dom F i^i dom G ) -> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) = ( x x. ( abs ` ( G ` z ) ) ) ) | 
						
							| 149 | 148 | adantl |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) = ( x x. ( abs ` ( G ` z ) ) ) ) | 
						
							| 150 | 145 147 149 | 3brtr4d |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ z e. ( dom F i^i dom G ) ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) <_ if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) | 
						
							| 151 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 152 | 151 | a1i |  |-  ( -. z e. ( dom F i^i dom G ) -> 0 <_ 0 ) | 
						
							| 153 |  | iffalse |  |-  ( -. z e. ( dom F i^i dom G ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) = 0 ) | 
						
							| 154 | 152 153 120 | 3brtr4d |  |-  ( -. z e. ( dom F i^i dom G ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) <_ if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) | 
						
							| 155 | 154 | adantl |  |-  ( ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) /\ -. z e. ( dom F i^i dom G ) ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) <_ if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) | 
						
							| 156 | 150 155 | pm2.61dan |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) <_ if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) | 
						
							| 157 | 156 | ralrimivw |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> A. z e. RR if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) <_ if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) | 
						
							| 158 | 46 | a1i |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> RR e. _V ) | 
						
							| 159 |  | eqidd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) = ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) ) | 
						
							| 160 |  | eqidd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) = ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) | 
						
							| 161 | 158 44 136 159 160 | ofrfval2 |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) oR <_ ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) <-> A. z e. RR if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) <_ if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) | 
						
							| 162 | 157 161 | mpbird |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) oR <_ ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) | 
						
							| 163 |  | itg2le |  |-  ( ( ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) oR <_ ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) ) <_ ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) ) | 
						
							| 164 | 45 137 162 163 | syl3anc |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) ) <_ ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) ) | 
						
							| 165 |  | itg2lecl |  |-  ( ( ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) e. RR /\ ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) ) <_ ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( x x. ( abs ` ( G ` z ) ) ) , 0 ) ) ) ) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) ) e. RR ) | 
						
							| 166 | 45 129 164 165 | syl3anc |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) ) e. RR ) | 
						
							| 167 | 36 38 | iblpos |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( ( z e. ( dom F i^i dom G ) |-> ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) ) e. L^1 <-> ( ( z e. ( dom F i^i dom G ) |-> ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) ) e. MblFn /\ ( S.2 ` ( z e. RR |-> if ( z e. ( dom F i^i dom G ) , ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) , 0 ) ) ) e. RR ) ) ) | 
						
							| 168 | 35 166 167 | mpbir2and |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. ( dom F i^i dom G ) |-> ( abs ` ( ( F ` z ) x. ( G ` z ) ) ) ) e. L^1 ) | 
						
							| 169 | 17 20 168 | iblabsr |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( z e. ( dom F i^i dom G ) |-> ( ( F ` z ) x. ( G ` z ) ) ) e. L^1 ) | 
						
							| 170 | 16 169 | eqeltrd |  |-  ( ( ( F e. MblFn /\ G e. L^1 ) /\ ( x e. RR /\ A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) ) -> ( F oF x. G ) e. L^1 ) | 
						
							| 171 | 170 | rexlimdvaa |  |-  ( ( F e. MblFn /\ G e. L^1 ) -> ( E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x -> ( F oF x. G ) e. L^1 ) ) | 
						
							| 172 | 171 | 3impia |  |-  ( ( F e. MblFn /\ G e. L^1 /\ E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) -> ( F oF x. G ) e. L^1 ) |