Step |
Hyp |
Ref |
Expression |
1 |
|
nmoptri.1 |
|- S e. BndLinOp |
2 |
|
nmoptri.2 |
|- T e. BndLinOp |
3 |
|
bdopln |
|- ( S e. BndLinOp -> S e. LinOp ) |
4 |
1 3
|
ax-mp |
|- S e. LinOp |
5 |
|
bdopln |
|- ( T e. BndLinOp -> T e. LinOp ) |
6 |
2 5
|
ax-mp |
|- T e. LinOp |
7 |
4 6
|
lnopcoi |
|- ( S o. T ) e. LinOp |
8 |
4
|
lnopfi |
|- S : ~H --> ~H |
9 |
6
|
lnopfi |
|- T : ~H --> ~H |
10 |
8 9
|
hocofi |
|- ( S o. T ) : ~H --> ~H |
11 |
|
nmopxr |
|- ( ( S o. T ) : ~H --> ~H -> ( normop ` ( S o. T ) ) e. RR* ) |
12 |
10 11
|
ax-mp |
|- ( normop ` ( S o. T ) ) e. RR* |
13 |
|
nmopre |
|- ( S e. BndLinOp -> ( normop ` S ) e. RR ) |
14 |
1 13
|
ax-mp |
|- ( normop ` S ) e. RR |
15 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
16 |
2 15
|
ax-mp |
|- ( normop ` T ) e. RR |
17 |
14 16
|
remulcli |
|- ( ( normop ` S ) x. ( normop ` T ) ) e. RR |
18 |
|
nmopgtmnf |
|- ( ( S o. T ) : ~H --> ~H -> -oo < ( normop ` ( S o. T ) ) ) |
19 |
10 18
|
ax-mp |
|- -oo < ( normop ` ( S o. T ) ) |
20 |
1 2
|
nmopcoi |
|- ( normop ` ( S o. T ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) |
21 |
|
xrre |
|- ( ( ( ( normop ` ( S o. T ) ) e. RR* /\ ( ( normop ` S ) x. ( normop ` T ) ) e. RR ) /\ ( -oo < ( normop ` ( S o. T ) ) /\ ( normop ` ( S o. T ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) ) ) -> ( normop ` ( S o. T ) ) e. RR ) |
22 |
12 17 19 20 21
|
mp4an |
|- ( normop ` ( S o. T ) ) e. RR |
23 |
|
elbdop2 |
|- ( ( S o. T ) e. BndLinOp <-> ( ( S o. T ) e. LinOp /\ ( normop ` ( S o. T ) ) e. RR ) ) |
24 |
7 22 23
|
mpbir2an |
|- ( S o. T ) e. BndLinOp |