Step |
Hyp |
Ref |
Expression |
1 |
|
nmoptri.1 |
|- S e. BndLinOp |
2 |
|
nmoptri.2 |
|- T e. BndLinOp |
3 |
|
bdopf |
|- ( S e. BndLinOp -> S : ~H --> ~H ) |
4 |
1 3
|
ax-mp |
|- S : ~H --> ~H |
5 |
|
bdopf |
|- ( T e. BndLinOp -> T : ~H --> ~H ) |
6 |
2 5
|
ax-mp |
|- T : ~H --> ~H |
7 |
4 6
|
honegsubi |
|- ( S +op ( -u 1 .op T ) ) = ( S -op T ) |
8 |
|
neg1cn |
|- -u 1 e. CC |
9 |
2
|
bdophmi |
|- ( -u 1 e. CC -> ( -u 1 .op T ) e. BndLinOp ) |
10 |
8 9
|
ax-mp |
|- ( -u 1 .op T ) e. BndLinOp |
11 |
1 10
|
bdophsi |
|- ( S +op ( -u 1 .op T ) ) e. BndLinOp |
12 |
7 11
|
eqeltrri |
|- ( S -op T ) e. BndLinOp |