Step |
Hyp |
Ref |
Expression |
1 |
|
nmoptri.1 |
|- S e. BndLinOp |
2 |
|
nmoptri.2 |
|- T e. BndLinOp |
3 |
|
bdopln |
|- ( S e. BndLinOp -> S e. LinOp ) |
4 |
1 3
|
ax-mp |
|- S e. LinOp |
5 |
|
bdopln |
|- ( T e. BndLinOp -> T e. LinOp ) |
6 |
2 5
|
ax-mp |
|- T e. LinOp |
7 |
4 6
|
lnophsi |
|- ( S +op T ) e. LinOp |
8 |
|
bdopf |
|- ( S e. BndLinOp -> S : ~H --> ~H ) |
9 |
1 8
|
ax-mp |
|- S : ~H --> ~H |
10 |
|
bdopf |
|- ( T e. BndLinOp -> T : ~H --> ~H ) |
11 |
2 10
|
ax-mp |
|- T : ~H --> ~H |
12 |
9 11
|
hoaddcli |
|- ( S +op T ) : ~H --> ~H |
13 |
|
nmopxr |
|- ( ( S +op T ) : ~H --> ~H -> ( normop ` ( S +op T ) ) e. RR* ) |
14 |
12 13
|
ax-mp |
|- ( normop ` ( S +op T ) ) e. RR* |
15 |
|
nmopre |
|- ( S e. BndLinOp -> ( normop ` S ) e. RR ) |
16 |
1 15
|
ax-mp |
|- ( normop ` S ) e. RR |
17 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
18 |
2 17
|
ax-mp |
|- ( normop ` T ) e. RR |
19 |
16 18
|
readdcli |
|- ( ( normop ` S ) + ( normop ` T ) ) e. RR |
20 |
|
nmopgtmnf |
|- ( ( S +op T ) : ~H --> ~H -> -oo < ( normop ` ( S +op T ) ) ) |
21 |
12 20
|
ax-mp |
|- -oo < ( normop ` ( S +op T ) ) |
22 |
1 2
|
nmoptrii |
|- ( normop ` ( S +op T ) ) <_ ( ( normop ` S ) + ( normop ` T ) ) |
23 |
|
xrre |
|- ( ( ( ( normop ` ( S +op T ) ) e. RR* /\ ( ( normop ` S ) + ( normop ` T ) ) e. RR ) /\ ( -oo < ( normop ` ( S +op T ) ) /\ ( normop ` ( S +op T ) ) <_ ( ( normop ` S ) + ( normop ` T ) ) ) ) -> ( normop ` ( S +op T ) ) e. RR ) |
24 |
14 19 21 22 23
|
mp4an |
|- ( normop ` ( S +op T ) ) e. RR |
25 |
|
elbdop2 |
|- ( ( S +op T ) e. BndLinOp <-> ( ( S +op T ) e. LinOp /\ ( normop ` ( S +op T ) ) e. RR ) ) |
26 |
7 24 25
|
mpbir2an |
|- ( S +op T ) e. BndLinOp |