Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( j = 0 -> ( A x. j ) = ( A x. 0 ) ) |
2 |
1
|
oveq2d |
|- ( j = 0 -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. 0 ) ) ) |
3 |
|
oveq2 |
|- ( j = 0 -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ 0 ) ) |
4 |
2 3
|
breq12d |
|- ( j = 0 -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) ) |
5 |
4
|
imbi2d |
|- ( j = 0 -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) ) ) |
6 |
|
oveq2 |
|- ( j = k -> ( A x. j ) = ( A x. k ) ) |
7 |
6
|
oveq2d |
|- ( j = k -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. k ) ) ) |
8 |
|
oveq2 |
|- ( j = k -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ k ) ) |
9 |
7 8
|
breq12d |
|- ( j = k -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) |
10 |
9
|
imbi2d |
|- ( j = k -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) ) |
11 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( A x. j ) = ( A x. ( k + 1 ) ) ) |
12 |
11
|
oveq2d |
|- ( j = ( k + 1 ) -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. ( k + 1 ) ) ) ) |
13 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ ( k + 1 ) ) ) |
14 |
12 13
|
breq12d |
|- ( j = ( k + 1 ) -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) |
15 |
14
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) |
16 |
|
oveq2 |
|- ( j = N -> ( A x. j ) = ( A x. N ) ) |
17 |
16
|
oveq2d |
|- ( j = N -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. N ) ) ) |
18 |
|
oveq2 |
|- ( j = N -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ N ) ) |
19 |
17 18
|
breq12d |
|- ( j = N -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) |
20 |
19
|
imbi2d |
|- ( j = N -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) ) |
21 |
|
recn |
|- ( A e. RR -> A e. CC ) |
22 |
|
mul01 |
|- ( A e. CC -> ( A x. 0 ) = 0 ) |
23 |
22
|
oveq2d |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) = ( 1 + 0 ) ) |
24 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
25 |
23 24
|
eqtrdi |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) = 1 ) |
26 |
|
1le1 |
|- 1 <_ 1 |
27 |
|
ax-1cn |
|- 1 e. CC |
28 |
|
addcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 + A ) e. CC ) |
29 |
27 28
|
mpan |
|- ( A e. CC -> ( 1 + A ) e. CC ) |
30 |
|
exp0 |
|- ( ( 1 + A ) e. CC -> ( ( 1 + A ) ^ 0 ) = 1 ) |
31 |
29 30
|
syl |
|- ( A e. CC -> ( ( 1 + A ) ^ 0 ) = 1 ) |
32 |
26 31
|
breqtrrid |
|- ( A e. CC -> 1 <_ ( ( 1 + A ) ^ 0 ) ) |
33 |
25 32
|
eqbrtrd |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) |
34 |
21 33
|
syl |
|- ( A e. RR -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) |
35 |
34
|
adantr |
|- ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) |
36 |
|
1re |
|- 1 e. RR |
37 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
38 |
|
remulcl |
|- ( ( A e. RR /\ k e. RR ) -> ( A x. k ) e. RR ) |
39 |
37 38
|
sylan2 |
|- ( ( A e. RR /\ k e. NN0 ) -> ( A x. k ) e. RR ) |
40 |
|
readdcl |
|- ( ( 1 e. RR /\ ( A x. k ) e. RR ) -> ( 1 + ( A x. k ) ) e. RR ) |
41 |
36 39 40
|
sylancr |
|- ( ( A e. RR /\ k e. NN0 ) -> ( 1 + ( A x. k ) ) e. RR ) |
42 |
|
simpl |
|- ( ( A e. RR /\ k e. NN0 ) -> A e. RR ) |
43 |
|
readdcl |
|- ( ( ( 1 + ( A x. k ) ) e. RR /\ A e. RR ) -> ( ( 1 + ( A x. k ) ) + A ) e. RR ) |
44 |
41 42 43
|
syl2anc |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) + A ) e. RR ) |
45 |
44
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) + A ) e. RR ) |
46 |
|
readdcl |
|- ( ( 1 e. RR /\ A e. RR ) -> ( 1 + A ) e. RR ) |
47 |
36 46
|
mpan |
|- ( A e. RR -> ( 1 + A ) e. RR ) |
48 |
47
|
adantr |
|- ( ( A e. RR /\ k e. NN0 ) -> ( 1 + A ) e. RR ) |
49 |
41 48
|
remulcld |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) e. RR ) |
50 |
49
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) e. RR ) |
51 |
|
reexpcl |
|- ( ( ( 1 + A ) e. RR /\ k e. NN0 ) -> ( ( 1 + A ) ^ k ) e. RR ) |
52 |
47 51
|
sylan |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + A ) ^ k ) e. RR ) |
53 |
52 48
|
remulcld |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) e. RR ) |
54 |
53
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) e. RR ) |
55 |
|
remulcl |
|- ( ( A e. RR /\ A e. RR ) -> ( A x. A ) e. RR ) |
56 |
55
|
anidms |
|- ( A e. RR -> ( A x. A ) e. RR ) |
57 |
|
msqge0 |
|- ( A e. RR -> 0 <_ ( A x. A ) ) |
58 |
56 57
|
jca |
|- ( A e. RR -> ( ( A x. A ) e. RR /\ 0 <_ ( A x. A ) ) ) |
59 |
|
nn0ge0 |
|- ( k e. NN0 -> 0 <_ k ) |
60 |
37 59
|
jca |
|- ( k e. NN0 -> ( k e. RR /\ 0 <_ k ) ) |
61 |
|
mulge0 |
|- ( ( ( ( A x. A ) e. RR /\ 0 <_ ( A x. A ) ) /\ ( k e. RR /\ 0 <_ k ) ) -> 0 <_ ( ( A x. A ) x. k ) ) |
62 |
58 60 61
|
syl2an |
|- ( ( A e. RR /\ k e. NN0 ) -> 0 <_ ( ( A x. A ) x. k ) ) |
63 |
21
|
adantr |
|- ( ( A e. RR /\ k e. NN0 ) -> A e. CC ) |
64 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
65 |
64
|
adantl |
|- ( ( A e. RR /\ k e. NN0 ) -> k e. CC ) |
66 |
63 63 65
|
mul32d |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( A x. A ) x. k ) = ( ( A x. k ) x. A ) ) |
67 |
62 66
|
breqtrd |
|- ( ( A e. RR /\ k e. NN0 ) -> 0 <_ ( ( A x. k ) x. A ) ) |
68 |
|
simpl |
|- ( ( A e. RR /\ k e. RR ) -> A e. RR ) |
69 |
38 68
|
remulcld |
|- ( ( A e. RR /\ k e. RR ) -> ( ( A x. k ) x. A ) e. RR ) |
70 |
37 69
|
sylan2 |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( A x. k ) x. A ) e. RR ) |
71 |
44 70
|
addge01d |
|- ( ( A e. RR /\ k e. NN0 ) -> ( 0 <_ ( ( A x. k ) x. A ) <-> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) ) ) |
72 |
67 71
|
mpbid |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) ) |
73 |
|
mulcl |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. k ) e. CC ) |
74 |
|
addcl |
|- ( ( 1 e. CC /\ ( A x. k ) e. CC ) -> ( 1 + ( A x. k ) ) e. CC ) |
75 |
27 73 74
|
sylancr |
|- ( ( A e. CC /\ k e. CC ) -> ( 1 + ( A x. k ) ) e. CC ) |
76 |
|
simpl |
|- ( ( A e. CC /\ k e. CC ) -> A e. CC ) |
77 |
73 76
|
mulcld |
|- ( ( A e. CC /\ k e. CC ) -> ( ( A x. k ) x. A ) e. CC ) |
78 |
75 76 77
|
addassd |
|- ( ( A e. CC /\ k e. CC ) -> ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) = ( ( 1 + ( A x. k ) ) + ( A + ( ( A x. k ) x. A ) ) ) ) |
79 |
|
muladd11 |
|- ( ( ( A x. k ) e. CC /\ A e. CC ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) = ( ( 1 + ( A x. k ) ) + ( A + ( ( A x. k ) x. A ) ) ) ) |
80 |
73 76 79
|
syl2anc |
|- ( ( A e. CC /\ k e. CC ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) = ( ( 1 + ( A x. k ) ) + ( A + ( ( A x. k ) x. A ) ) ) ) |
81 |
78 80
|
eqtr4d |
|- ( ( A e. CC /\ k e. CC ) -> ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) = ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
82 |
21 64 81
|
syl2an |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) = ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
83 |
72 82
|
breqtrd |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
84 |
83
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
85 |
41
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. k ) ) e. RR ) |
86 |
52
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + A ) ^ k ) e. RR ) |
87 |
48
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + A ) e. RR ) |
88 |
|
neg1rr |
|- -u 1 e. RR |
89 |
|
leadd2 |
|- ( ( -u 1 e. RR /\ A e. RR /\ 1 e. RR ) -> ( -u 1 <_ A <-> ( 1 + -u 1 ) <_ ( 1 + A ) ) ) |
90 |
88 36 89
|
mp3an13 |
|- ( A e. RR -> ( -u 1 <_ A <-> ( 1 + -u 1 ) <_ ( 1 + A ) ) ) |
91 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
92 |
91
|
breq1i |
|- ( ( 1 + -u 1 ) <_ ( 1 + A ) <-> 0 <_ ( 1 + A ) ) |
93 |
90 92
|
bitrdi |
|- ( A e. RR -> ( -u 1 <_ A <-> 0 <_ ( 1 + A ) ) ) |
94 |
93
|
biimpa |
|- ( ( A e. RR /\ -u 1 <_ A ) -> 0 <_ ( 1 + A ) ) |
95 |
94
|
ad2ant2r |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> 0 <_ ( 1 + A ) ) |
96 |
|
simprr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) |
97 |
85 86 87 95 96
|
lemul1ad |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) <_ ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
98 |
45 50 54 84 97
|
letrd |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
99 |
|
adddi |
|- ( ( A e. CC /\ k e. CC /\ 1 e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
100 |
27 99
|
mp3an3 |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
101 |
|
mulid1 |
|- ( A e. CC -> ( A x. 1 ) = A ) |
102 |
101
|
adantr |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. 1 ) = A ) |
103 |
102
|
oveq2d |
|- ( ( A e. CC /\ k e. CC ) -> ( ( A x. k ) + ( A x. 1 ) ) = ( ( A x. k ) + A ) ) |
104 |
100 103
|
eqtrd |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + A ) ) |
105 |
104
|
oveq2d |
|- ( ( A e. CC /\ k e. CC ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( 1 + ( ( A x. k ) + A ) ) ) |
106 |
|
addass |
|- ( ( 1 e. CC /\ ( A x. k ) e. CC /\ A e. CC ) -> ( ( 1 + ( A x. k ) ) + A ) = ( 1 + ( ( A x. k ) + A ) ) ) |
107 |
27 73 76 106
|
mp3an2i |
|- ( ( A e. CC /\ k e. CC ) -> ( ( 1 + ( A x. k ) ) + A ) = ( 1 + ( ( A x. k ) + A ) ) ) |
108 |
105 107
|
eqtr4d |
|- ( ( A e. CC /\ k e. CC ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( ( 1 + ( A x. k ) ) + A ) ) |
109 |
21 64 108
|
syl2an |
|- ( ( A e. RR /\ k e. NN0 ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( ( 1 + ( A x. k ) ) + A ) ) |
110 |
109
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( ( 1 + ( A x. k ) ) + A ) ) |
111 |
27 21 28
|
sylancr |
|- ( A e. RR -> ( 1 + A ) e. CC ) |
112 |
|
expp1 |
|- ( ( ( 1 + A ) e. CC /\ k e. NN0 ) -> ( ( 1 + A ) ^ ( k + 1 ) ) = ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
113 |
111 112
|
sylan |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + A ) ^ ( k + 1 ) ) = ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
114 |
113
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + A ) ^ ( k + 1 ) ) = ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
115 |
98 110 114
|
3brtr4d |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) |
116 |
115
|
exp43 |
|- ( A e. RR -> ( k e. NN0 -> ( -u 1 <_ A -> ( ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) ) |
117 |
116
|
com12 |
|- ( k e. NN0 -> ( A e. RR -> ( -u 1 <_ A -> ( ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) ) |
118 |
117
|
impd |
|- ( k e. NN0 -> ( ( A e. RR /\ -u 1 <_ A ) -> ( ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) |
119 |
118
|
a2d |
|- ( k e. NN0 -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) -> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) |
120 |
5 10 15 20 35 119
|
nn0ind |
|- ( N e. NN0 -> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) |
121 |
120
|
expd |
|- ( N e. NN0 -> ( A e. RR -> ( -u 1 <_ A -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) ) |
122 |
121
|
3imp21 |
|- ( ( A e. RR /\ N e. NN0 /\ -u 1 <_ A ) -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) |