| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( j = 0 -> ( A x. j ) = ( A x. 0 ) ) |
| 2 |
1
|
oveq2d |
|- ( j = 0 -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. 0 ) ) ) |
| 3 |
|
oveq2 |
|- ( j = 0 -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ 0 ) ) |
| 4 |
2 3
|
breq12d |
|- ( j = 0 -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) ) |
| 5 |
4
|
imbi2d |
|- ( j = 0 -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) ) ) |
| 6 |
|
oveq2 |
|- ( j = k -> ( A x. j ) = ( A x. k ) ) |
| 7 |
6
|
oveq2d |
|- ( j = k -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. k ) ) ) |
| 8 |
|
oveq2 |
|- ( j = k -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ k ) ) |
| 9 |
7 8
|
breq12d |
|- ( j = k -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) |
| 10 |
9
|
imbi2d |
|- ( j = k -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) ) |
| 11 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( A x. j ) = ( A x. ( k + 1 ) ) ) |
| 12 |
11
|
oveq2d |
|- ( j = ( k + 1 ) -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. ( k + 1 ) ) ) ) |
| 13 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ ( k + 1 ) ) ) |
| 14 |
12 13
|
breq12d |
|- ( j = ( k + 1 ) -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) |
| 15 |
14
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) |
| 16 |
|
oveq2 |
|- ( j = N -> ( A x. j ) = ( A x. N ) ) |
| 17 |
16
|
oveq2d |
|- ( j = N -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. N ) ) ) |
| 18 |
|
oveq2 |
|- ( j = N -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ N ) ) |
| 19 |
17 18
|
breq12d |
|- ( j = N -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) |
| 20 |
19
|
imbi2d |
|- ( j = N -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) ) |
| 21 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 22 |
|
mul01 |
|- ( A e. CC -> ( A x. 0 ) = 0 ) |
| 23 |
22
|
oveq2d |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) = ( 1 + 0 ) ) |
| 24 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
| 25 |
23 24
|
eqtrdi |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) = 1 ) |
| 26 |
|
1le1 |
|- 1 <_ 1 |
| 27 |
|
ax-1cn |
|- 1 e. CC |
| 28 |
|
addcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 + A ) e. CC ) |
| 29 |
27 28
|
mpan |
|- ( A e. CC -> ( 1 + A ) e. CC ) |
| 30 |
|
exp0 |
|- ( ( 1 + A ) e. CC -> ( ( 1 + A ) ^ 0 ) = 1 ) |
| 31 |
29 30
|
syl |
|- ( A e. CC -> ( ( 1 + A ) ^ 0 ) = 1 ) |
| 32 |
26 31
|
breqtrrid |
|- ( A e. CC -> 1 <_ ( ( 1 + A ) ^ 0 ) ) |
| 33 |
25 32
|
eqbrtrd |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) |
| 34 |
21 33
|
syl |
|- ( A e. RR -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) |
| 35 |
34
|
adantr |
|- ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) |
| 36 |
|
1re |
|- 1 e. RR |
| 37 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
| 38 |
|
remulcl |
|- ( ( A e. RR /\ k e. RR ) -> ( A x. k ) e. RR ) |
| 39 |
37 38
|
sylan2 |
|- ( ( A e. RR /\ k e. NN0 ) -> ( A x. k ) e. RR ) |
| 40 |
|
readdcl |
|- ( ( 1 e. RR /\ ( A x. k ) e. RR ) -> ( 1 + ( A x. k ) ) e. RR ) |
| 41 |
36 39 40
|
sylancr |
|- ( ( A e. RR /\ k e. NN0 ) -> ( 1 + ( A x. k ) ) e. RR ) |
| 42 |
|
simpl |
|- ( ( A e. RR /\ k e. NN0 ) -> A e. RR ) |
| 43 |
|
readdcl |
|- ( ( ( 1 + ( A x. k ) ) e. RR /\ A e. RR ) -> ( ( 1 + ( A x. k ) ) + A ) e. RR ) |
| 44 |
41 42 43
|
syl2anc |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) + A ) e. RR ) |
| 45 |
44
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) + A ) e. RR ) |
| 46 |
|
readdcl |
|- ( ( 1 e. RR /\ A e. RR ) -> ( 1 + A ) e. RR ) |
| 47 |
36 46
|
mpan |
|- ( A e. RR -> ( 1 + A ) e. RR ) |
| 48 |
47
|
adantr |
|- ( ( A e. RR /\ k e. NN0 ) -> ( 1 + A ) e. RR ) |
| 49 |
41 48
|
remulcld |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) e. RR ) |
| 50 |
49
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) e. RR ) |
| 51 |
|
reexpcl |
|- ( ( ( 1 + A ) e. RR /\ k e. NN0 ) -> ( ( 1 + A ) ^ k ) e. RR ) |
| 52 |
47 51
|
sylan |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + A ) ^ k ) e. RR ) |
| 53 |
52 48
|
remulcld |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) e. RR ) |
| 54 |
53
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) e. RR ) |
| 55 |
|
remulcl |
|- ( ( A e. RR /\ A e. RR ) -> ( A x. A ) e. RR ) |
| 56 |
55
|
anidms |
|- ( A e. RR -> ( A x. A ) e. RR ) |
| 57 |
|
msqge0 |
|- ( A e. RR -> 0 <_ ( A x. A ) ) |
| 58 |
56 57
|
jca |
|- ( A e. RR -> ( ( A x. A ) e. RR /\ 0 <_ ( A x. A ) ) ) |
| 59 |
|
nn0ge0 |
|- ( k e. NN0 -> 0 <_ k ) |
| 60 |
37 59
|
jca |
|- ( k e. NN0 -> ( k e. RR /\ 0 <_ k ) ) |
| 61 |
|
mulge0 |
|- ( ( ( ( A x. A ) e. RR /\ 0 <_ ( A x. A ) ) /\ ( k e. RR /\ 0 <_ k ) ) -> 0 <_ ( ( A x. A ) x. k ) ) |
| 62 |
58 60 61
|
syl2an |
|- ( ( A e. RR /\ k e. NN0 ) -> 0 <_ ( ( A x. A ) x. k ) ) |
| 63 |
21
|
adantr |
|- ( ( A e. RR /\ k e. NN0 ) -> A e. CC ) |
| 64 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
| 65 |
64
|
adantl |
|- ( ( A e. RR /\ k e. NN0 ) -> k e. CC ) |
| 66 |
63 63 65
|
mul32d |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( A x. A ) x. k ) = ( ( A x. k ) x. A ) ) |
| 67 |
62 66
|
breqtrd |
|- ( ( A e. RR /\ k e. NN0 ) -> 0 <_ ( ( A x. k ) x. A ) ) |
| 68 |
|
simpl |
|- ( ( A e. RR /\ k e. RR ) -> A e. RR ) |
| 69 |
38 68
|
remulcld |
|- ( ( A e. RR /\ k e. RR ) -> ( ( A x. k ) x. A ) e. RR ) |
| 70 |
37 69
|
sylan2 |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( A x. k ) x. A ) e. RR ) |
| 71 |
44 70
|
addge01d |
|- ( ( A e. RR /\ k e. NN0 ) -> ( 0 <_ ( ( A x. k ) x. A ) <-> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) ) ) |
| 72 |
67 71
|
mpbid |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) ) |
| 73 |
|
mulcl |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. k ) e. CC ) |
| 74 |
|
addcl |
|- ( ( 1 e. CC /\ ( A x. k ) e. CC ) -> ( 1 + ( A x. k ) ) e. CC ) |
| 75 |
27 73 74
|
sylancr |
|- ( ( A e. CC /\ k e. CC ) -> ( 1 + ( A x. k ) ) e. CC ) |
| 76 |
|
simpl |
|- ( ( A e. CC /\ k e. CC ) -> A e. CC ) |
| 77 |
73 76
|
mulcld |
|- ( ( A e. CC /\ k e. CC ) -> ( ( A x. k ) x. A ) e. CC ) |
| 78 |
75 76 77
|
addassd |
|- ( ( A e. CC /\ k e. CC ) -> ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) = ( ( 1 + ( A x. k ) ) + ( A + ( ( A x. k ) x. A ) ) ) ) |
| 79 |
|
muladd11 |
|- ( ( ( A x. k ) e. CC /\ A e. CC ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) = ( ( 1 + ( A x. k ) ) + ( A + ( ( A x. k ) x. A ) ) ) ) |
| 80 |
73 76 79
|
syl2anc |
|- ( ( A e. CC /\ k e. CC ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) = ( ( 1 + ( A x. k ) ) + ( A + ( ( A x. k ) x. A ) ) ) ) |
| 81 |
78 80
|
eqtr4d |
|- ( ( A e. CC /\ k e. CC ) -> ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) = ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
| 82 |
21 64 81
|
syl2an |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) = ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
| 83 |
72 82
|
breqtrd |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
| 84 |
83
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
| 85 |
41
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. k ) ) e. RR ) |
| 86 |
52
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + A ) ^ k ) e. RR ) |
| 87 |
48
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + A ) e. RR ) |
| 88 |
|
neg1rr |
|- -u 1 e. RR |
| 89 |
|
leadd2 |
|- ( ( -u 1 e. RR /\ A e. RR /\ 1 e. RR ) -> ( -u 1 <_ A <-> ( 1 + -u 1 ) <_ ( 1 + A ) ) ) |
| 90 |
88 36 89
|
mp3an13 |
|- ( A e. RR -> ( -u 1 <_ A <-> ( 1 + -u 1 ) <_ ( 1 + A ) ) ) |
| 91 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
| 92 |
91
|
breq1i |
|- ( ( 1 + -u 1 ) <_ ( 1 + A ) <-> 0 <_ ( 1 + A ) ) |
| 93 |
90 92
|
bitrdi |
|- ( A e. RR -> ( -u 1 <_ A <-> 0 <_ ( 1 + A ) ) ) |
| 94 |
93
|
biimpa |
|- ( ( A e. RR /\ -u 1 <_ A ) -> 0 <_ ( 1 + A ) ) |
| 95 |
94
|
ad2ant2r |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> 0 <_ ( 1 + A ) ) |
| 96 |
|
simprr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) |
| 97 |
85 86 87 95 96
|
lemul1ad |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) <_ ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
| 98 |
45 50 54 84 97
|
letrd |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
| 99 |
|
adddi |
|- ( ( A e. CC /\ k e. CC /\ 1 e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
| 100 |
27 99
|
mp3an3 |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
| 101 |
|
mulrid |
|- ( A e. CC -> ( A x. 1 ) = A ) |
| 102 |
101
|
adantr |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. 1 ) = A ) |
| 103 |
102
|
oveq2d |
|- ( ( A e. CC /\ k e. CC ) -> ( ( A x. k ) + ( A x. 1 ) ) = ( ( A x. k ) + A ) ) |
| 104 |
100 103
|
eqtrd |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + A ) ) |
| 105 |
104
|
oveq2d |
|- ( ( A e. CC /\ k e. CC ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( 1 + ( ( A x. k ) + A ) ) ) |
| 106 |
|
addass |
|- ( ( 1 e. CC /\ ( A x. k ) e. CC /\ A e. CC ) -> ( ( 1 + ( A x. k ) ) + A ) = ( 1 + ( ( A x. k ) + A ) ) ) |
| 107 |
27 73 76 106
|
mp3an2i |
|- ( ( A e. CC /\ k e. CC ) -> ( ( 1 + ( A x. k ) ) + A ) = ( 1 + ( ( A x. k ) + A ) ) ) |
| 108 |
105 107
|
eqtr4d |
|- ( ( A e. CC /\ k e. CC ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( ( 1 + ( A x. k ) ) + A ) ) |
| 109 |
21 64 108
|
syl2an |
|- ( ( A e. RR /\ k e. NN0 ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( ( 1 + ( A x. k ) ) + A ) ) |
| 110 |
109
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( ( 1 + ( A x. k ) ) + A ) ) |
| 111 |
27 21 28
|
sylancr |
|- ( A e. RR -> ( 1 + A ) e. CC ) |
| 112 |
|
expp1 |
|- ( ( ( 1 + A ) e. CC /\ k e. NN0 ) -> ( ( 1 + A ) ^ ( k + 1 ) ) = ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
| 113 |
111 112
|
sylan |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + A ) ^ ( k + 1 ) ) = ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
| 114 |
113
|
adantr |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + A ) ^ ( k + 1 ) ) = ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
| 115 |
98 110 114
|
3brtr4d |
|- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) |
| 116 |
115
|
exp43 |
|- ( A e. RR -> ( k e. NN0 -> ( -u 1 <_ A -> ( ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) ) |
| 117 |
116
|
com12 |
|- ( k e. NN0 -> ( A e. RR -> ( -u 1 <_ A -> ( ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) ) |
| 118 |
117
|
impd |
|- ( k e. NN0 -> ( ( A e. RR /\ -u 1 <_ A ) -> ( ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) |
| 119 |
118
|
a2d |
|- ( k e. NN0 -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) -> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) |
| 120 |
5 10 15 20 35 119
|
nn0ind |
|- ( N e. NN0 -> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) |
| 121 |
120
|
expd |
|- ( N e. NN0 -> ( A e. RR -> ( -u 1 <_ A -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) ) |
| 122 |
121
|
3imp21 |
|- ( ( A e. RR /\ N e. NN0 /\ -u 1 <_ A ) -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) |