Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
|- ( z = t -> ( z = ( ( A x. x ) + ( B x. y ) ) <-> t = ( ( A x. x ) + ( B x. y ) ) ) ) |
2 |
1
|
2rexbidv |
|- ( z = t -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ t = ( ( A x. x ) + ( B x. y ) ) ) ) |
3 |
|
oveq2 |
|- ( x = u -> ( A x. x ) = ( A x. u ) ) |
4 |
3
|
oveq1d |
|- ( x = u -> ( ( A x. x ) + ( B x. y ) ) = ( ( A x. u ) + ( B x. y ) ) ) |
5 |
4
|
eqeq2d |
|- ( x = u -> ( t = ( ( A x. x ) + ( B x. y ) ) <-> t = ( ( A x. u ) + ( B x. y ) ) ) ) |
6 |
|
oveq2 |
|- ( y = v -> ( B x. y ) = ( B x. v ) ) |
7 |
6
|
oveq2d |
|- ( y = v -> ( ( A x. u ) + ( B x. y ) ) = ( ( A x. u ) + ( B x. v ) ) ) |
8 |
7
|
eqeq2d |
|- ( y = v -> ( t = ( ( A x. u ) + ( B x. y ) ) <-> t = ( ( A x. u ) + ( B x. v ) ) ) ) |
9 |
5 8
|
cbvrex2vw |
|- ( E. x e. ZZ E. y e. ZZ t = ( ( A x. x ) + ( B x. y ) ) <-> E. u e. ZZ E. v e. ZZ t = ( ( A x. u ) + ( B x. v ) ) ) |
10 |
2 9
|
bitrdi |
|- ( z = t -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. u e. ZZ E. v e. ZZ t = ( ( A x. u ) + ( B x. v ) ) ) ) |
11 |
10
|
cbvrabv |
|- { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } = { t e. NN | E. u e. ZZ E. v e. ZZ t = ( ( A x. u ) + ( B x. v ) ) } |
12 |
|
simpll |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> A e. ZZ ) |
13 |
|
simplr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> B e. ZZ ) |
14 |
|
eqid |
|- inf ( { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } , RR , < ) = inf ( { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } , RR , < ) |
15 |
|
simpr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> -. ( A = 0 /\ B = 0 ) ) |
16 |
11 12 13 14 15
|
bezoutlem4 |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } ) |
17 |
|
eqeq1 |
|- ( z = ( A gcd B ) -> ( z = ( ( A x. x ) + ( B x. y ) ) <-> ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
18 |
17
|
2rexbidv |
|- ( z = ( A gcd B ) -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
19 |
18
|
elrab |
|- ( ( A gcd B ) e. { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } <-> ( ( A gcd B ) e. NN /\ E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
20 |
19
|
simprbi |
|- ( ( A gcd B ) e. { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } -> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) |
21 |
16 20
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) |
22 |
21
|
ex |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( -. ( A = 0 /\ B = 0 ) -> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
23 |
|
0z |
|- 0 e. ZZ |
24 |
|
00id |
|- ( 0 + 0 ) = 0 |
25 |
|
0cn |
|- 0 e. CC |
26 |
25
|
mul01i |
|- ( 0 x. 0 ) = 0 |
27 |
26 26
|
oveq12i |
|- ( ( 0 x. 0 ) + ( 0 x. 0 ) ) = ( 0 + 0 ) |
28 |
|
gcd0val |
|- ( 0 gcd 0 ) = 0 |
29 |
24 27 28
|
3eqtr4ri |
|- ( 0 gcd 0 ) = ( ( 0 x. 0 ) + ( 0 x. 0 ) ) |
30 |
|
oveq2 |
|- ( x = 0 -> ( 0 x. x ) = ( 0 x. 0 ) ) |
31 |
30
|
oveq1d |
|- ( x = 0 -> ( ( 0 x. x ) + ( 0 x. y ) ) = ( ( 0 x. 0 ) + ( 0 x. y ) ) ) |
32 |
31
|
eqeq2d |
|- ( x = 0 -> ( ( 0 gcd 0 ) = ( ( 0 x. x ) + ( 0 x. y ) ) <-> ( 0 gcd 0 ) = ( ( 0 x. 0 ) + ( 0 x. y ) ) ) ) |
33 |
|
oveq2 |
|- ( y = 0 -> ( 0 x. y ) = ( 0 x. 0 ) ) |
34 |
33
|
oveq2d |
|- ( y = 0 -> ( ( 0 x. 0 ) + ( 0 x. y ) ) = ( ( 0 x. 0 ) + ( 0 x. 0 ) ) ) |
35 |
34
|
eqeq2d |
|- ( y = 0 -> ( ( 0 gcd 0 ) = ( ( 0 x. 0 ) + ( 0 x. y ) ) <-> ( 0 gcd 0 ) = ( ( 0 x. 0 ) + ( 0 x. 0 ) ) ) ) |
36 |
32 35
|
rspc2ev |
|- ( ( 0 e. ZZ /\ 0 e. ZZ /\ ( 0 gcd 0 ) = ( ( 0 x. 0 ) + ( 0 x. 0 ) ) ) -> E. x e. ZZ E. y e. ZZ ( 0 gcd 0 ) = ( ( 0 x. x ) + ( 0 x. y ) ) ) |
37 |
23 23 29 36
|
mp3an |
|- E. x e. ZZ E. y e. ZZ ( 0 gcd 0 ) = ( ( 0 x. x ) + ( 0 x. y ) ) |
38 |
|
oveq12 |
|- ( ( A = 0 /\ B = 0 ) -> ( A gcd B ) = ( 0 gcd 0 ) ) |
39 |
|
oveq1 |
|- ( A = 0 -> ( A x. x ) = ( 0 x. x ) ) |
40 |
|
oveq1 |
|- ( B = 0 -> ( B x. y ) = ( 0 x. y ) ) |
41 |
39 40
|
oveqan12d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A x. x ) + ( B x. y ) ) = ( ( 0 x. x ) + ( 0 x. y ) ) ) |
42 |
38 41
|
eqeq12d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) <-> ( 0 gcd 0 ) = ( ( 0 x. x ) + ( 0 x. y ) ) ) ) |
43 |
42
|
2rexbidv |
|- ( ( A = 0 /\ B = 0 ) -> ( E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ ( 0 gcd 0 ) = ( ( 0 x. x ) + ( 0 x. y ) ) ) ) |
44 |
37 43
|
mpbiri |
|- ( ( A = 0 /\ B = 0 ) -> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) |
45 |
22 44
|
pm2.61d2 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) |