Step |
Hyp |
Ref |
Expression |
1 |
|
bezoutr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( A gcd B ) || ( ( A x. X ) + ( B x. Y ) ) ) |
2 |
1
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) || ( ( A x. X ) + ( B x. Y ) ) ) |
3 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( ( A x. X ) + ( B x. Y ) ) = 1 ) |
4 |
2 3
|
breqtrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) || 1 ) |
5 |
|
gcdcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
6 |
5
|
nn0zd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
7 |
6
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) e. ZZ ) |
8 |
|
1nn |
|- 1 e. NN |
9 |
8
|
a1i |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> 1 e. NN ) |
10 |
|
dvdsle |
|- ( ( ( A gcd B ) e. ZZ /\ 1 e. NN ) -> ( ( A gcd B ) || 1 -> ( A gcd B ) <_ 1 ) ) |
11 |
7 9 10
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( ( A gcd B ) || 1 -> ( A gcd B ) <_ 1 ) ) |
12 |
4 11
|
mpd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) <_ 1 ) |
13 |
|
simpll |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A e. ZZ /\ B e. ZZ ) ) |
14 |
|
oveq1 |
|- ( A = 0 -> ( A x. X ) = ( 0 x. X ) ) |
15 |
|
oveq1 |
|- ( B = 0 -> ( B x. Y ) = ( 0 x. Y ) ) |
16 |
14 15
|
oveqan12d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A x. X ) + ( B x. Y ) ) = ( ( 0 x. X ) + ( 0 x. Y ) ) ) |
17 |
|
zcn |
|- ( X e. ZZ -> X e. CC ) |
18 |
17
|
mul02d |
|- ( X e. ZZ -> ( 0 x. X ) = 0 ) |
19 |
|
zcn |
|- ( Y e. ZZ -> Y e. CC ) |
20 |
19
|
mul02d |
|- ( Y e. ZZ -> ( 0 x. Y ) = 0 ) |
21 |
18 20
|
oveqan12d |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( ( 0 x. X ) + ( 0 x. Y ) ) = ( 0 + 0 ) ) |
22 |
16 21
|
sylan9eqr |
|- ( ( ( X e. ZZ /\ Y e. ZZ ) /\ ( A = 0 /\ B = 0 ) ) -> ( ( A x. X ) + ( B x. Y ) ) = ( 0 + 0 ) ) |
23 |
|
00id |
|- ( 0 + 0 ) = 0 |
24 |
22 23
|
eqtrdi |
|- ( ( ( X e. ZZ /\ Y e. ZZ ) /\ ( A = 0 /\ B = 0 ) ) -> ( ( A x. X ) + ( B x. Y ) ) = 0 ) |
25 |
24
|
adantll |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( A = 0 /\ B = 0 ) ) -> ( ( A x. X ) + ( B x. Y ) ) = 0 ) |
26 |
|
0ne1 |
|- 0 =/= 1 |
27 |
26
|
a1i |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( A = 0 /\ B = 0 ) ) -> 0 =/= 1 ) |
28 |
25 27
|
eqnetrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( A = 0 /\ B = 0 ) ) -> ( ( A x. X ) + ( B x. Y ) ) =/= 1 ) |
29 |
28
|
ex |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( ( A = 0 /\ B = 0 ) -> ( ( A x. X ) + ( B x. Y ) ) =/= 1 ) ) |
30 |
29
|
necon2bd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = 1 -> -. ( A = 0 /\ B = 0 ) ) ) |
31 |
30
|
imp |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> -. ( A = 0 /\ B = 0 ) ) |
32 |
|
gcdn0cl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
33 |
13 31 32
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) e. NN ) |
34 |
|
nnle1eq1 |
|- ( ( A gcd B ) e. NN -> ( ( A gcd B ) <_ 1 <-> ( A gcd B ) = 1 ) ) |
35 |
33 34
|
syl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( ( A gcd B ) <_ 1 <-> ( A gcd B ) = 1 ) ) |
36 |
12 35
|
mpbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) /\ ( ( A x. X ) + ( B x. Y ) ) = 1 ) -> ( A gcd B ) = 1 ) |
37 |
36
|
ex |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = 1 -> ( A gcd B ) = 1 ) ) |