| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bgoldbtbnd.m |  |-  ( ph -> M e. ( ZZ>= ` ; 1 1 ) ) | 
						
							| 2 |  | bgoldbtbnd.n |  |-  ( ph -> N e. ( ZZ>= ` ; 1 1 ) ) | 
						
							| 3 |  | bgoldbtbnd.b |  |-  ( ph -> A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) ) | 
						
							| 4 |  | bgoldbtbnd.d |  |-  ( ph -> D e. ( ZZ>= ` 3 ) ) | 
						
							| 5 |  | bgoldbtbnd.f |  |-  ( ph -> F e. ( RePart ` D ) ) | 
						
							| 6 |  | bgoldbtbnd.i |  |-  ( ph -> A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) ) | 
						
							| 7 |  | bgoldbtbnd.0 |  |-  ( ph -> ( F ` 0 ) = 7 ) | 
						
							| 8 |  | bgoldbtbnd.1 |  |-  ( ph -> ( F ` 1 ) = ; 1 3 ) | 
						
							| 9 |  | bgoldbtbnd.l |  |-  ( ph -> M < ( F ` D ) ) | 
						
							| 10 |  | bgoldbtbnd.r |  |-  ( ph -> ( F ` D ) e. RR ) | 
						
							| 11 |  | simprl |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. Odd ) | 
						
							| 12 |  | eluzge3nn |  |-  ( D e. ( ZZ>= ` 3 ) -> D e. NN ) | 
						
							| 13 | 4 12 | syl |  |-  ( ph -> D e. NN ) | 
						
							| 14 |  | iccelpart |  |-  ( D e. NN -> A. f e. ( RePart ` D ) ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> A. f e. ( RePart ` D ) ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) ) | 
						
							| 16 |  | fveq1 |  |-  ( f = F -> ( f ` 0 ) = ( F ` 0 ) ) | 
						
							| 17 |  | fveq1 |  |-  ( f = F -> ( f ` D ) = ( F ` D ) ) | 
						
							| 18 | 16 17 | oveq12d |  |-  ( f = F -> ( ( f ` 0 ) [,) ( f ` D ) ) = ( ( F ` 0 ) [,) ( F ` D ) ) ) | 
						
							| 19 | 18 | eleq2d |  |-  ( f = F -> ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) <-> n e. ( ( F ` 0 ) [,) ( F ` D ) ) ) ) | 
						
							| 20 |  | fveq1 |  |-  ( f = F -> ( f ` j ) = ( F ` j ) ) | 
						
							| 21 |  | fveq1 |  |-  ( f = F -> ( f ` ( j + 1 ) ) = ( F ` ( j + 1 ) ) ) | 
						
							| 22 | 20 21 | oveq12d |  |-  ( f = F -> ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) = ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) | 
						
							| 23 | 22 | eleq2d |  |-  ( f = F -> ( n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) <-> n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) ) | 
						
							| 24 | 23 | rexbidv |  |-  ( f = F -> ( E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) <-> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) ) | 
						
							| 25 | 19 24 | imbi12d |  |-  ( f = F -> ( ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) <-> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) ) ) | 
						
							| 26 | 25 | rspcv |  |-  ( F e. ( RePart ` D ) -> ( A. f e. ( RePart ` D ) ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) -> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) ) ) | 
						
							| 27 | 5 26 | syl |  |-  ( ph -> ( A. f e. ( RePart ` D ) ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) -> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) ) ) | 
						
							| 28 |  | oddz |  |-  ( n e. Odd -> n e. ZZ ) | 
						
							| 29 | 28 | zred |  |-  ( n e. Odd -> n e. RR ) | 
						
							| 30 | 29 | rexrd |  |-  ( n e. Odd -> n e. RR* ) | 
						
							| 31 | 30 | ad2antrl |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. RR* ) | 
						
							| 32 |  | 7re |  |-  7 e. RR | 
						
							| 33 |  | ltle |  |-  ( ( 7 e. RR /\ n e. RR ) -> ( 7 < n -> 7 <_ n ) ) | 
						
							| 34 | 32 29 33 | sylancr |  |-  ( n e. Odd -> ( 7 < n -> 7 <_ n ) ) | 
						
							| 35 | 34 | com12 |  |-  ( 7 < n -> ( n e. Odd -> 7 <_ n ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( 7 < n /\ n < M ) -> ( n e. Odd -> 7 <_ n ) ) | 
						
							| 37 | 36 | impcom |  |-  ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> 7 <_ n ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> 7 <_ n ) | 
						
							| 39 |  | eluzelre |  |-  ( M e. ( ZZ>= ` ; 1 1 ) -> M e. RR ) | 
						
							| 40 | 39 | rexrd |  |-  ( M e. ( ZZ>= ` ; 1 1 ) -> M e. RR* ) | 
						
							| 41 | 1 40 | syl |  |-  ( ph -> M e. RR* ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> M e. RR* ) | 
						
							| 43 | 10 | rexrd |  |-  ( ph -> ( F ` D ) e. RR* ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( F ` D ) e. RR* ) | 
						
							| 45 |  | simprrr |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n < M ) | 
						
							| 46 | 9 | adantr |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> M < ( F ` D ) ) | 
						
							| 47 | 31 42 44 45 46 | xrlttrd |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n < ( F ` D ) ) | 
						
							| 48 | 7 | oveq1d |  |-  ( ph -> ( ( F ` 0 ) [,) ( F ` D ) ) = ( 7 [,) ( F ` D ) ) ) | 
						
							| 49 | 48 | eleq2d |  |-  ( ph -> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) <-> n e. ( 7 [,) ( F ` D ) ) ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) <-> n e. ( 7 [,) ( F ` D ) ) ) ) | 
						
							| 51 | 32 | rexri |  |-  7 e. RR* | 
						
							| 52 |  | elico1 |  |-  ( ( 7 e. RR* /\ ( F ` D ) e. RR* ) -> ( n e. ( 7 [,) ( F ` D ) ) <-> ( n e. RR* /\ 7 <_ n /\ n < ( F ` D ) ) ) ) | 
						
							| 53 | 51 44 52 | sylancr |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( 7 [,) ( F ` D ) ) <-> ( n e. RR* /\ 7 <_ n /\ n < ( F ` D ) ) ) ) | 
						
							| 54 | 50 53 | bitrd |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) <-> ( n e. RR* /\ 7 <_ n /\ n < ( F ` D ) ) ) ) | 
						
							| 55 | 31 38 47 54 | mpbir3and |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. ( ( F ` 0 ) [,) ( F ` D ) ) ) | 
						
							| 56 |  | fzo0sn0fzo1 |  |-  ( D e. NN -> ( 0 ..^ D ) = ( { 0 } u. ( 1 ..^ D ) ) ) | 
						
							| 57 | 56 | eleq2d |  |-  ( D e. NN -> ( j e. ( 0 ..^ D ) <-> j e. ( { 0 } u. ( 1 ..^ D ) ) ) ) | 
						
							| 58 |  | elun |  |-  ( j e. ( { 0 } u. ( 1 ..^ D ) ) <-> ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) ) | 
						
							| 59 | 57 58 | bitrdi |  |-  ( D e. NN -> ( j e. ( 0 ..^ D ) <-> ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) ) ) | 
						
							| 60 | 13 59 | syl |  |-  ( ph -> ( j e. ( 0 ..^ D ) <-> ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( j e. ( 0 ..^ D ) <-> ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) ) ) | 
						
							| 62 |  | velsn |  |-  ( j e. { 0 } <-> j = 0 ) | 
						
							| 63 |  | fveq2 |  |-  ( j = 0 -> ( F ` j ) = ( F ` 0 ) ) | 
						
							| 64 |  | fv0p1e1 |  |-  ( j = 0 -> ( F ` ( j + 1 ) ) = ( F ` 1 ) ) | 
						
							| 65 | 63 64 | oveq12d |  |-  ( j = 0 -> ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) = ( ( F ` 0 ) [,) ( F ` 1 ) ) ) | 
						
							| 66 | 7 8 | oveq12d |  |-  ( ph -> ( ( F ` 0 ) [,) ( F ` 1 ) ) = ( 7 [,) ; 1 3 ) ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( F ` 0 ) [,) ( F ` 1 ) ) = ( 7 [,) ; 1 3 ) ) | 
						
							| 68 | 65 67 | sylan9eq |  |-  ( ( j = 0 /\ ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) ) -> ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) = ( 7 [,) ; 1 3 ) ) | 
						
							| 69 | 68 | eleq2d |  |-  ( ( j = 0 /\ ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) <-> n e. ( 7 [,) ; 1 3 ) ) ) | 
						
							| 70 | 11 | adantr |  |-  ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> n e. Odd ) | 
						
							| 71 |  | simprrl |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> 7 < n ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> 7 < n ) | 
						
							| 73 |  | simpr |  |-  ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> n e. ( 7 [,) ; 1 3 ) ) | 
						
							| 74 |  | bgoldbtbndlem1 |  |-  ( ( n e. Odd /\ 7 < n /\ n e. ( 7 [,) ; 1 3 ) ) -> n e. GoldbachOdd ) | 
						
							| 75 | 70 72 73 74 | syl3anc |  |-  ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> n e. GoldbachOdd ) | 
						
							| 76 |  | isgbo |  |-  ( n e. GoldbachOdd <-> ( n e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 77 | 75 76 | sylib |  |-  ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> ( n e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 78 | 77 | simprd |  |-  ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) | 
						
							| 79 | 78 | ex |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( 7 [,) ; 1 3 ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 80 | 79 | adantl |  |-  ( ( j = 0 /\ ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) ) -> ( n e. ( 7 [,) ; 1 3 ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 81 | 69 80 | sylbid |  |-  ( ( j = 0 /\ ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 82 | 81 | ex |  |-  ( j = 0 -> ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 83 | 62 82 | sylbi |  |-  ( j e. { 0 } -> ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 84 |  | fzo0ss1 |  |-  ( 1 ..^ D ) C_ ( 0 ..^ D ) | 
						
							| 85 | 84 | sseli |  |-  ( j e. ( 1 ..^ D ) -> j e. ( 0 ..^ D ) ) | 
						
							| 86 |  | fveq2 |  |-  ( i = j -> ( F ` i ) = ( F ` j ) ) | 
						
							| 87 | 86 | eleq1d |  |-  ( i = j -> ( ( F ` i ) e. ( Prime \ { 2 } ) <-> ( F ` j ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 88 |  | fvoveq1 |  |-  ( i = j -> ( F ` ( i + 1 ) ) = ( F ` ( j + 1 ) ) ) | 
						
							| 89 | 88 86 | oveq12d |  |-  ( i = j -> ( ( F ` ( i + 1 ) ) - ( F ` i ) ) = ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) | 
						
							| 90 | 89 | breq1d |  |-  ( i = j -> ( ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) <-> ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) ) ) | 
						
							| 91 | 89 | breq2d |  |-  ( i = j -> ( 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) <-> 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) | 
						
							| 92 | 87 90 91 | 3anbi123d |  |-  ( i = j -> ( ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) <-> ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) | 
						
							| 93 | 92 | rspcv |  |-  ( j e. ( 0 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) | 
						
							| 94 | 85 93 | syl |  |-  ( j e. ( 1 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) | 
						
							| 95 | 6 94 | mpan9 |  |-  ( ( ph /\ j e. ( 1 ..^ D ) ) -> ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) | 
						
							| 96 | 1 2 3 4 5 6 7 8 9 10 | bgoldbtbndlem4 |  |-  ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ n e. Odd ) -> ( ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) /\ ( n - ( F ` j ) ) <_ 4 ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 97 | 96 | ad2ant2r |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) /\ ( n - ( F ` j ) ) <_ 4 ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 98 | 97 | expcomd |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n - ( F ` j ) ) <_ 4 -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 99 |  | simplll |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ph ) | 
						
							| 100 |  | simprl |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. Odd ) | 
						
							| 101 |  | simpllr |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> j e. ( 1 ..^ D ) ) | 
						
							| 102 |  | eqid |  |-  ( n - ( F ` j ) ) = ( n - ( F ` j ) ) | 
						
							| 103 | 1 2 3 4 5 6 7 8 9 10 102 | bgoldbtbndlem3 |  |-  ( ( ph /\ n e. Odd /\ j e. ( 1 ..^ D ) ) -> ( ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) /\ 4 < ( n - ( F ` j ) ) ) -> ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) ) ) | 
						
							| 104 | 99 100 101 103 | syl3anc |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) /\ 4 < ( n - ( F ` j ) ) ) -> ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) ) ) | 
						
							| 105 |  | breq2 |  |-  ( n = m -> ( 4 < n <-> 4 < m ) ) | 
						
							| 106 |  | breq1 |  |-  ( n = m -> ( n < N <-> m < N ) ) | 
						
							| 107 | 105 106 | anbi12d |  |-  ( n = m -> ( ( 4 < n /\ n < N ) <-> ( 4 < m /\ m < N ) ) ) | 
						
							| 108 |  | eleq1 |  |-  ( n = m -> ( n e. GoldbachEven <-> m e. GoldbachEven ) ) | 
						
							| 109 | 107 108 | imbi12d |  |-  ( n = m -> ( ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) <-> ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) ) ) | 
						
							| 110 | 109 | cbvralvw |  |-  ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) <-> A. m e. Even ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) ) | 
						
							| 111 |  | breq2 |  |-  ( m = ( n - ( F ` j ) ) -> ( 4 < m <-> 4 < ( n - ( F ` j ) ) ) ) | 
						
							| 112 |  | breq1 |  |-  ( m = ( n - ( F ` j ) ) -> ( m < N <-> ( n - ( F ` j ) ) < N ) ) | 
						
							| 113 | 111 112 | anbi12d |  |-  ( m = ( n - ( F ` j ) ) -> ( ( 4 < m /\ m < N ) <-> ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) ) ) | 
						
							| 114 |  | eleq1 |  |-  ( m = ( n - ( F ` j ) ) -> ( m e. GoldbachEven <-> ( n - ( F ` j ) ) e. GoldbachEven ) ) | 
						
							| 115 | 113 114 | imbi12d |  |-  ( m = ( n - ( F ` j ) ) -> ( ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) <-> ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) ) ) | 
						
							| 116 | 115 | rspcv |  |-  ( ( n - ( F ` j ) ) e. Even -> ( A. m e. Even ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) -> ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) ) ) | 
						
							| 117 | 110 116 | biimtrid |  |-  ( ( n - ( F ` j ) ) e. Even -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) ) ) | 
						
							| 118 |  | pm3.35 |  |-  ( ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) /\ ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) ) -> ( n - ( F ` j ) ) e. GoldbachEven ) | 
						
							| 119 |  | isgbe |  |-  ( ( n - ( F ` j ) ) e. GoldbachEven <-> ( ( n - ( F ` j ) ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) ) | 
						
							| 120 |  | eldifi |  |-  ( ( F ` j ) e. ( Prime \ { 2 } ) -> ( F ` j ) e. Prime ) | 
						
							| 121 | 120 | 3ad2ant1 |  |-  ( ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) -> ( F ` j ) e. Prime ) | 
						
							| 122 | 121 | adantl |  |-  ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( F ` j ) e. Prime ) | 
						
							| 123 | 122 | ad5antlr |  |-  ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> ( F ` j ) e. Prime ) | 
						
							| 124 |  | eleq1 |  |-  ( r = ( F ` j ) -> ( r e. Odd <-> ( F ` j ) e. Odd ) ) | 
						
							| 125 | 124 | 3anbi3d |  |-  ( r = ( F ` j ) -> ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) <-> ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) ) ) | 
						
							| 126 |  | oveq2 |  |-  ( r = ( F ` j ) -> ( ( p + q ) + r ) = ( ( p + q ) + ( F ` j ) ) ) | 
						
							| 127 | 126 | eqeq2d |  |-  ( r = ( F ` j ) -> ( n = ( ( p + q ) + r ) <-> n = ( ( p + q ) + ( F ` j ) ) ) ) | 
						
							| 128 | 125 127 | anbi12d |  |-  ( r = ( F ` j ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) /\ n = ( ( p + q ) + ( F ` j ) ) ) ) ) | 
						
							| 129 | 128 | adantl |  |-  ( ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) /\ r = ( F ` j ) ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) /\ n = ( ( p + q ) + ( F ` j ) ) ) ) ) | 
						
							| 130 |  | oddprmALTV |  |-  ( ( F ` j ) e. ( Prime \ { 2 } ) -> ( F ` j ) e. Odd ) | 
						
							| 131 | 130 | 3ad2ant1 |  |-  ( ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) -> ( F ` j ) e. Odd ) | 
						
							| 132 | 131 | adantl |  |-  ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( F ` j ) e. Odd ) | 
						
							| 133 | 132 | ad4antlr |  |-  ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) -> ( F ` j ) e. Odd ) | 
						
							| 134 |  | 3simpa |  |-  ( ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> ( p e. Odd /\ q e. Odd ) ) | 
						
							| 135 | 133 134 | anim12ci |  |-  ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> ( ( p e. Odd /\ q e. Odd ) /\ ( F ` j ) e. Odd ) ) | 
						
							| 136 |  | df-3an |  |-  ( ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) <-> ( ( p e. Odd /\ q e. Odd ) /\ ( F ` j ) e. Odd ) ) | 
						
							| 137 | 135 136 | sylibr |  |-  ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) ) | 
						
							| 138 | 28 | zcnd |  |-  ( n e. Odd -> n e. CC ) | 
						
							| 139 | 138 | ad2antrl |  |-  ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. CC ) | 
						
							| 140 |  | prmz |  |-  ( ( F ` j ) e. Prime -> ( F ` j ) e. ZZ ) | 
						
							| 141 | 140 | zcnd |  |-  ( ( F ` j ) e. Prime -> ( F ` j ) e. CC ) | 
						
							| 142 | 120 141 | syl |  |-  ( ( F ` j ) e. ( Prime \ { 2 } ) -> ( F ` j ) e. CC ) | 
						
							| 143 | 142 | 3ad2ant1 |  |-  ( ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) -> ( F ` j ) e. CC ) | 
						
							| 144 | 143 | adantl |  |-  ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( F ` j ) e. CC ) | 
						
							| 145 | 144 | ad2antlr |  |-  ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( F ` j ) e. CC ) | 
						
							| 146 | 139 145 | npcand |  |-  ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n - ( F ` j ) ) + ( F ` j ) ) = n ) | 
						
							| 147 | 146 | adantr |  |-  ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) -> ( ( n - ( F ` j ) ) + ( F ` j ) ) = n ) | 
						
							| 148 | 147 | ad2antrl |  |-  ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) ) -> ( ( n - ( F ` j ) ) + ( F ` j ) ) = n ) | 
						
							| 149 |  | oveq1 |  |-  ( ( n - ( F ` j ) ) = ( p + q ) -> ( ( n - ( F ` j ) ) + ( F ` j ) ) = ( ( p + q ) + ( F ` j ) ) ) | 
						
							| 150 | 148 149 | sylan9req |  |-  ( ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) ) /\ ( n - ( F ` j ) ) = ( p + q ) ) -> n = ( ( p + q ) + ( F ` j ) ) ) | 
						
							| 151 | 150 | exp31 |  |-  ( ( p e. Odd /\ q e. Odd ) -> ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( n - ( F ` j ) ) = ( p + q ) -> n = ( ( p + q ) + ( F ` j ) ) ) ) ) | 
						
							| 152 | 151 | com23 |  |-  ( ( p e. Odd /\ q e. Odd ) -> ( ( n - ( F ` j ) ) = ( p + q ) -> ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) -> n = ( ( p + q ) + ( F ` j ) ) ) ) ) | 
						
							| 153 | 152 | 3impia |  |-  ( ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) -> n = ( ( p + q ) + ( F ` j ) ) ) ) | 
						
							| 154 | 153 | impcom |  |-  ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> n = ( ( p + q ) + ( F ` j ) ) ) | 
						
							| 155 | 137 154 | jca |  |-  ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> ( ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) /\ n = ( ( p + q ) + ( F ` j ) ) ) ) | 
						
							| 156 | 123 129 155 | rspcedvd |  |-  ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) | 
						
							| 157 | 156 | ex |  |-  ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 158 | 157 | reximdva |  |-  ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) -> ( E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 159 | 158 | reximdva |  |-  ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 160 | 159 | exp41 |  |-  ( ( n - ( F ` j ) ) e. Even -> ( ph -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) | 
						
							| 161 | 160 | com25 |  |-  ( ( n - ( F ` j ) ) e. Even -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) | 
						
							| 162 | 161 | imp |  |-  ( ( ( n - ( F ` j ) ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) | 
						
							| 163 | 119 162 | sylbi |  |-  ( ( n - ( F ` j ) ) e. GoldbachEven -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) | 
						
							| 164 | 163 | a1d |  |-  ( ( n - ( F ` j ) ) e. GoldbachEven -> ( ( n - ( F ` j ) ) e. Even -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) | 
						
							| 165 | 118 164 | syl |  |-  ( ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) /\ ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) ) -> ( ( n - ( F ` j ) ) e. Even -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) | 
						
							| 166 | 165 | ex |  |-  ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) -> ( ( n - ( F ` j ) ) e. Even -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) ) | 
						
							| 167 | 166 | ancoms |  |-  ( ( ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> ( ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) -> ( ( n - ( F ` j ) ) e. Even -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) ) | 
						
							| 168 | 167 | com13 |  |-  ( ( n - ( F ` j ) ) e. Even -> ( ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) -> ( ( ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) ) | 
						
							| 169 | 117 168 | syld |  |-  ( ( n - ( F ` j ) ) e. Even -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) ) | 
						
							| 170 | 169 | com23 |  |-  ( ( n - ( F ` j ) ) e. Even -> ( ( ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) ) | 
						
							| 171 | 170 | 3impib |  |-  ( ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) | 
						
							| 172 | 171 | com15 |  |-  ( ph -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) | 
						
							| 173 | 3 172 | mpd |  |-  ( ph -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) | 
						
							| 174 | 173 | impl |  |-  ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 175 | 174 | imp |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 176 | 104 175 | syld |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) /\ 4 < ( n - ( F ` j ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 177 | 176 | expcomd |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( 4 < ( n - ( F ` j ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 178 | 29 | ad2antrl |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. RR ) | 
						
							| 179 | 140 | zred |  |-  ( ( F ` j ) e. Prime -> ( F ` j ) e. RR ) | 
						
							| 180 | 120 179 | syl |  |-  ( ( F ` j ) e. ( Prime \ { 2 } ) -> ( F ` j ) e. RR ) | 
						
							| 181 | 180 | 3ad2ant1 |  |-  ( ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) -> ( F ` j ) e. RR ) | 
						
							| 182 | 181 | ad2antlr |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( F ` j ) e. RR ) | 
						
							| 183 | 178 182 | resubcld |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n - ( F ` j ) ) e. RR ) | 
						
							| 184 |  | 4re |  |-  4 e. RR | 
						
							| 185 |  | lelttric |  |-  ( ( ( n - ( F ` j ) ) e. RR /\ 4 e. RR ) -> ( ( n - ( F ` j ) ) <_ 4 \/ 4 < ( n - ( F ` j ) ) ) ) | 
						
							| 186 | 183 184 185 | sylancl |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n - ( F ` j ) ) <_ 4 \/ 4 < ( n - ( F ` j ) ) ) ) | 
						
							| 187 | 98 177 186 | mpjaod |  |-  ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 188 | 187 | ex |  |-  ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 189 | 95 188 | mpdan |  |-  ( ( ph /\ j e. ( 1 ..^ D ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 190 | 189 | expcom |  |-  ( j e. ( 1 ..^ D ) -> ( ph -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) | 
						
							| 191 | 190 | impd |  |-  ( j e. ( 1 ..^ D ) -> ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 192 | 83 191 | jaoi |  |-  ( ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) -> ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 193 | 192 | com12 |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 194 | 61 193 | sylbid |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( j e. ( 0 ..^ D ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 195 | 194 | rexlimdv |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 196 | 55 195 | embantd |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 197 | 196 | ex |  |-  ( ph -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 198 | 197 | com23 |  |-  ( ph -> ( ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 199 | 27 198 | syld |  |-  ( ph -> ( A. f e. ( RePart ` D ) ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 200 | 15 199 | mpd |  |-  ( ph -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 201 | 200 | imp |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) | 
						
							| 202 | 11 201 | jca |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 203 | 202 76 | sylibr |  |-  ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. GoldbachOdd ) | 
						
							| 204 | 203 | exp32 |  |-  ( ph -> ( n e. Odd -> ( ( 7 < n /\ n < M ) -> n e. GoldbachOdd ) ) ) | 
						
							| 205 | 204 | ralrimiv |  |-  ( ph -> A. n e. Odd ( ( 7 < n /\ n < M ) -> n e. GoldbachOdd ) ) |