| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 7re |  |-  7 e. RR | 
						
							| 2 | 1 | rexri |  |-  7 e. RR* | 
						
							| 3 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 4 |  | 3nn |  |-  3 e. NN | 
						
							| 5 | 3 4 | decnncl |  |-  ; 1 3 e. NN | 
						
							| 6 | 5 | nnrei |  |-  ; 1 3 e. RR | 
						
							| 7 | 6 | rexri |  |-  ; 1 3 e. RR* | 
						
							| 8 |  | elico1 |  |-  ( ( 7 e. RR* /\ ; 1 3 e. RR* ) -> ( N e. ( 7 [,) ; 1 3 ) <-> ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) ) ) | 
						
							| 9 | 2 7 8 | mp2an |  |-  ( N e. ( 7 [,) ; 1 3 ) <-> ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) ) | 
						
							| 10 |  | 7nn |  |-  7 e. NN | 
						
							| 11 | 10 | nnzi |  |-  7 e. ZZ | 
						
							| 12 |  | oddz |  |-  ( N e. Odd -> N e. ZZ ) | 
						
							| 13 |  | zltp1le |  |-  ( ( 7 e. ZZ /\ N e. ZZ ) -> ( 7 < N <-> ( 7 + 1 ) <_ N ) ) | 
						
							| 14 |  | 7p1e8 |  |-  ( 7 + 1 ) = 8 | 
						
							| 15 | 14 | breq1i |  |-  ( ( 7 + 1 ) <_ N <-> 8 <_ N ) | 
						
							| 16 | 15 | a1i |  |-  ( ( 7 e. ZZ /\ N e. ZZ ) -> ( ( 7 + 1 ) <_ N <-> 8 <_ N ) ) | 
						
							| 17 |  | 8re |  |-  8 e. RR | 
						
							| 18 | 17 | a1i |  |-  ( 7 e. ZZ -> 8 e. RR ) | 
						
							| 19 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 20 |  | leloe |  |-  ( ( 8 e. RR /\ N e. RR ) -> ( 8 <_ N <-> ( 8 < N \/ 8 = N ) ) ) | 
						
							| 21 | 18 19 20 | syl2an |  |-  ( ( 7 e. ZZ /\ N e. ZZ ) -> ( 8 <_ N <-> ( 8 < N \/ 8 = N ) ) ) | 
						
							| 22 | 13 16 21 | 3bitrd |  |-  ( ( 7 e. ZZ /\ N e. ZZ ) -> ( 7 < N <-> ( 8 < N \/ 8 = N ) ) ) | 
						
							| 23 | 11 12 22 | sylancr |  |-  ( N e. Odd -> ( 7 < N <-> ( 8 < N \/ 8 = N ) ) ) | 
						
							| 24 |  | 8nn |  |-  8 e. NN | 
						
							| 25 | 24 | nnzi |  |-  8 e. ZZ | 
						
							| 26 |  | zltp1le |  |-  ( ( 8 e. ZZ /\ N e. ZZ ) -> ( 8 < N <-> ( 8 + 1 ) <_ N ) ) | 
						
							| 27 | 25 12 26 | sylancr |  |-  ( N e. Odd -> ( 8 < N <-> ( 8 + 1 ) <_ N ) ) | 
						
							| 28 |  | 8p1e9 |  |-  ( 8 + 1 ) = 9 | 
						
							| 29 | 28 | breq1i |  |-  ( ( 8 + 1 ) <_ N <-> 9 <_ N ) | 
						
							| 30 | 29 | a1i |  |-  ( N e. Odd -> ( ( 8 + 1 ) <_ N <-> 9 <_ N ) ) | 
						
							| 31 |  | 9re |  |-  9 e. RR | 
						
							| 32 | 31 | a1i |  |-  ( N e. Odd -> 9 e. RR ) | 
						
							| 33 | 12 | zred |  |-  ( N e. Odd -> N e. RR ) | 
						
							| 34 | 32 33 | leloed |  |-  ( N e. Odd -> ( 9 <_ N <-> ( 9 < N \/ 9 = N ) ) ) | 
						
							| 35 | 27 30 34 | 3bitrd |  |-  ( N e. Odd -> ( 8 < N <-> ( 9 < N \/ 9 = N ) ) ) | 
						
							| 36 |  | 9nn |  |-  9 e. NN | 
						
							| 37 | 36 | nnzi |  |-  9 e. ZZ | 
						
							| 38 |  | zltp1le |  |-  ( ( 9 e. ZZ /\ N e. ZZ ) -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) | 
						
							| 39 | 37 12 38 | sylancr |  |-  ( N e. Odd -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) | 
						
							| 40 |  | 9p1e10 |  |-  ( 9 + 1 ) = ; 1 0 | 
						
							| 41 | 40 | breq1i |  |-  ( ( 9 + 1 ) <_ N <-> ; 1 0 <_ N ) | 
						
							| 42 | 41 | a1i |  |-  ( N e. Odd -> ( ( 9 + 1 ) <_ N <-> ; 1 0 <_ N ) ) | 
						
							| 43 |  | 10re |  |-  ; 1 0 e. RR | 
						
							| 44 | 43 | a1i |  |-  ( N e. Odd -> ; 1 0 e. RR ) | 
						
							| 45 | 44 33 | leloed |  |-  ( N e. Odd -> ( ; 1 0 <_ N <-> ( ; 1 0 < N \/ ; 1 0 = N ) ) ) | 
						
							| 46 | 39 42 45 | 3bitrd |  |-  ( N e. Odd -> ( 9 < N <-> ( ; 1 0 < N \/ ; 1 0 = N ) ) ) | 
						
							| 47 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 48 | 47 | nnzi |  |-  ; 1 0 e. ZZ | 
						
							| 49 |  | zltp1le |  |-  ( ( ; 1 0 e. ZZ /\ N e. ZZ ) -> ( ; 1 0 < N <-> ( ; 1 0 + 1 ) <_ N ) ) | 
						
							| 50 | 48 12 49 | sylancr |  |-  ( N e. Odd -> ( ; 1 0 < N <-> ( ; 1 0 + 1 ) <_ N ) ) | 
						
							| 51 |  | dec10p |  |-  ( ; 1 0 + 1 ) = ; 1 1 | 
						
							| 52 | 51 | breq1i |  |-  ( ( ; 1 0 + 1 ) <_ N <-> ; 1 1 <_ N ) | 
						
							| 53 | 52 | a1i |  |-  ( N e. Odd -> ( ( ; 1 0 + 1 ) <_ N <-> ; 1 1 <_ N ) ) | 
						
							| 54 |  | 1nn |  |-  1 e. NN | 
						
							| 55 | 3 54 | decnncl |  |-  ; 1 1 e. NN | 
						
							| 56 | 55 | nnrei |  |-  ; 1 1 e. RR | 
						
							| 57 | 56 | a1i |  |-  ( N e. Odd -> ; 1 1 e. RR ) | 
						
							| 58 | 57 33 | leloed |  |-  ( N e. Odd -> ( ; 1 1 <_ N <-> ( ; 1 1 < N \/ ; 1 1 = N ) ) ) | 
						
							| 59 | 50 53 58 | 3bitrd |  |-  ( N e. Odd -> ( ; 1 0 < N <-> ( ; 1 1 < N \/ ; 1 1 = N ) ) ) | 
						
							| 60 | 55 | nnzi |  |-  ; 1 1 e. ZZ | 
						
							| 61 |  | zltp1le |  |-  ( ( ; 1 1 e. ZZ /\ N e. ZZ ) -> ( ; 1 1 < N <-> ( ; 1 1 + 1 ) <_ N ) ) | 
						
							| 62 | 60 12 61 | sylancr |  |-  ( N e. Odd -> ( ; 1 1 < N <-> ( ; 1 1 + 1 ) <_ N ) ) | 
						
							| 63 | 51 | eqcomi |  |-  ; 1 1 = ( ; 1 0 + 1 ) | 
						
							| 64 | 63 | oveq1i |  |-  ( ; 1 1 + 1 ) = ( ( ; 1 0 + 1 ) + 1 ) | 
						
							| 65 | 47 | nncni |  |-  ; 1 0 e. CC | 
						
							| 66 |  | ax-1cn |  |-  1 e. CC | 
						
							| 67 | 65 66 66 | addassi |  |-  ( ( ; 1 0 + 1 ) + 1 ) = ( ; 1 0 + ( 1 + 1 ) ) | 
						
							| 68 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 69 | 68 | oveq2i |  |-  ( ; 1 0 + ( 1 + 1 ) ) = ( ; 1 0 + 2 ) | 
						
							| 70 |  | dec10p |  |-  ( ; 1 0 + 2 ) = ; 1 2 | 
						
							| 71 | 69 70 | eqtri |  |-  ( ; 1 0 + ( 1 + 1 ) ) = ; 1 2 | 
						
							| 72 | 64 67 71 | 3eqtri |  |-  ( ; 1 1 + 1 ) = ; 1 2 | 
						
							| 73 | 72 | breq1i |  |-  ( ( ; 1 1 + 1 ) <_ N <-> ; 1 2 <_ N ) | 
						
							| 74 | 73 | a1i |  |-  ( N e. Odd -> ( ( ; 1 1 + 1 ) <_ N <-> ; 1 2 <_ N ) ) | 
						
							| 75 |  | 2nn |  |-  2 e. NN | 
						
							| 76 | 3 75 | decnncl |  |-  ; 1 2 e. NN | 
						
							| 77 | 76 | nnrei |  |-  ; 1 2 e. RR | 
						
							| 78 | 77 | a1i |  |-  ( N e. Odd -> ; 1 2 e. RR ) | 
						
							| 79 | 78 33 | leloed |  |-  ( N e. Odd -> ( ; 1 2 <_ N <-> ( ; 1 2 < N \/ ; 1 2 = N ) ) ) | 
						
							| 80 | 62 74 79 | 3bitrd |  |-  ( N e. Odd -> ( ; 1 1 < N <-> ( ; 1 2 < N \/ ; 1 2 = N ) ) ) | 
						
							| 81 | 76 | nnzi |  |-  ; 1 2 e. ZZ | 
						
							| 82 |  | zltp1le |  |-  ( ( ; 1 2 e. ZZ /\ N e. ZZ ) -> ( ; 1 2 < N <-> ( ; 1 2 + 1 ) <_ N ) ) | 
						
							| 83 | 81 12 82 | sylancr |  |-  ( N e. Odd -> ( ; 1 2 < N <-> ( ; 1 2 + 1 ) <_ N ) ) | 
						
							| 84 | 70 | eqcomi |  |-  ; 1 2 = ( ; 1 0 + 2 ) | 
						
							| 85 | 84 | oveq1i |  |-  ( ; 1 2 + 1 ) = ( ( ; 1 0 + 2 ) + 1 ) | 
						
							| 86 |  | 2cn |  |-  2 e. CC | 
						
							| 87 | 65 86 66 | addassi |  |-  ( ( ; 1 0 + 2 ) + 1 ) = ( ; 1 0 + ( 2 + 1 ) ) | 
						
							| 88 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 89 | 88 | oveq2i |  |-  ( ; 1 0 + ( 2 + 1 ) ) = ( ; 1 0 + 3 ) | 
						
							| 90 |  | dec10p |  |-  ( ; 1 0 + 3 ) = ; 1 3 | 
						
							| 91 | 89 90 | eqtri |  |-  ( ; 1 0 + ( 2 + 1 ) ) = ; 1 3 | 
						
							| 92 | 85 87 91 | 3eqtri |  |-  ( ; 1 2 + 1 ) = ; 1 3 | 
						
							| 93 | 92 | breq1i |  |-  ( ( ; 1 2 + 1 ) <_ N <-> ; 1 3 <_ N ) | 
						
							| 94 | 93 | a1i |  |-  ( N e. Odd -> ( ( ; 1 2 + 1 ) <_ N <-> ; 1 3 <_ N ) ) | 
						
							| 95 | 6 | a1i |  |-  ( N e. Odd -> ; 1 3 e. RR ) | 
						
							| 96 | 95 33 | lenltd |  |-  ( N e. Odd -> ( ; 1 3 <_ N <-> -. N < ; 1 3 ) ) | 
						
							| 97 | 83 94 96 | 3bitrd |  |-  ( N e. Odd -> ( ; 1 2 < N <-> -. N < ; 1 3 ) ) | 
						
							| 98 |  | pm2.21 |  |-  ( -. N < ; 1 3 -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) | 
						
							| 99 | 97 98 | biimtrdi |  |-  ( N e. Odd -> ( ; 1 2 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 100 | 99 | com12 |  |-  ( ; 1 2 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 101 |  | eleq1 |  |-  ( ; 1 2 = N -> ( ; 1 2 e. Odd <-> N e. Odd ) ) | 
						
							| 102 |  | 6p6e12 |  |-  ( 6 + 6 ) = ; 1 2 | 
						
							| 103 |  | 6even |  |-  6 e. Even | 
						
							| 104 |  | epee |  |-  ( ( 6 e. Even /\ 6 e. Even ) -> ( 6 + 6 ) e. Even ) | 
						
							| 105 | 103 103 104 | mp2an |  |-  ( 6 + 6 ) e. Even | 
						
							| 106 | 102 105 | eqeltrri |  |-  ; 1 2 e. Even | 
						
							| 107 |  | evennodd |  |-  ( ; 1 2 e. Even -> -. ; 1 2 e. Odd ) | 
						
							| 108 | 106 107 | ax-mp |  |-  -. ; 1 2 e. Odd | 
						
							| 109 | 108 | pm2.21i |  |-  ( ; 1 2 e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) | 
						
							| 110 | 101 109 | biimtrrdi |  |-  ( ; 1 2 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 111 | 100 110 | jaoi |  |-  ( ( ; 1 2 < N \/ ; 1 2 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 112 | 111 | com12 |  |-  ( N e. Odd -> ( ( ; 1 2 < N \/ ; 1 2 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 113 | 80 112 | sylbid |  |-  ( N e. Odd -> ( ; 1 1 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 114 | 113 | com12 |  |-  ( ; 1 1 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 115 |  | 11gbo |  |-  ; 1 1 e. GoldbachOdd | 
						
							| 116 |  | eleq1 |  |-  ( ; 1 1 = N -> ( ; 1 1 e. GoldbachOdd <-> N e. GoldbachOdd ) ) | 
						
							| 117 | 115 116 | mpbii |  |-  ( ; 1 1 = N -> N e. GoldbachOdd ) | 
						
							| 118 | 117 | 2a1d |  |-  ( ; 1 1 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 119 | 114 118 | jaoi |  |-  ( ( ; 1 1 < N \/ ; 1 1 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 120 | 119 | com12 |  |-  ( N e. Odd -> ( ( ; 1 1 < N \/ ; 1 1 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 121 | 59 120 | sylbid |  |-  ( N e. Odd -> ( ; 1 0 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 122 | 121 | com12 |  |-  ( ; 1 0 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 123 |  | eleq1 |  |-  ( ; 1 0 = N -> ( ; 1 0 e. Odd <-> N e. Odd ) ) | 
						
							| 124 |  | 5p5e10 |  |-  ( 5 + 5 ) = ; 1 0 | 
						
							| 125 |  | 5odd |  |-  5 e. Odd | 
						
							| 126 |  | opoeALTV |  |-  ( ( 5 e. Odd /\ 5 e. Odd ) -> ( 5 + 5 ) e. Even ) | 
						
							| 127 | 125 125 126 | mp2an |  |-  ( 5 + 5 ) e. Even | 
						
							| 128 | 124 127 | eqeltrri |  |-  ; 1 0 e. Even | 
						
							| 129 |  | evennodd |  |-  ( ; 1 0 e. Even -> -. ; 1 0 e. Odd ) | 
						
							| 130 | 128 129 | ax-mp |  |-  -. ; 1 0 e. Odd | 
						
							| 131 | 130 | pm2.21i |  |-  ( ; 1 0 e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) | 
						
							| 132 | 123 131 | biimtrrdi |  |-  ( ; 1 0 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 133 | 122 132 | jaoi |  |-  ( ( ; 1 0 < N \/ ; 1 0 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 134 | 133 | com12 |  |-  ( N e. Odd -> ( ( ; 1 0 < N \/ ; 1 0 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 135 | 46 134 | sylbid |  |-  ( N e. Odd -> ( 9 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 136 | 135 | com12 |  |-  ( 9 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 137 |  | 9gbo |  |-  9 e. GoldbachOdd | 
						
							| 138 |  | eleq1 |  |-  ( 9 = N -> ( 9 e. GoldbachOdd <-> N e. GoldbachOdd ) ) | 
						
							| 139 | 137 138 | mpbii |  |-  ( 9 = N -> N e. GoldbachOdd ) | 
						
							| 140 | 139 | 2a1d |  |-  ( 9 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 141 | 136 140 | jaoi |  |-  ( ( 9 < N \/ 9 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 142 | 141 | com12 |  |-  ( N e. Odd -> ( ( 9 < N \/ 9 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 143 | 35 142 | sylbid |  |-  ( N e. Odd -> ( 8 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 144 | 143 | com12 |  |-  ( 8 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 145 |  | eleq1 |  |-  ( 8 = N -> ( 8 e. Odd <-> N e. Odd ) ) | 
						
							| 146 |  | 8even |  |-  8 e. Even | 
						
							| 147 |  | evennodd |  |-  ( 8 e. Even -> -. 8 e. Odd ) | 
						
							| 148 | 146 147 | ax-mp |  |-  -. 8 e. Odd | 
						
							| 149 | 148 | pm2.21i |  |-  ( 8 e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) | 
						
							| 150 | 145 149 | biimtrrdi |  |-  ( 8 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 151 | 144 150 | jaoi |  |-  ( ( 8 < N \/ 8 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 152 | 151 | com12 |  |-  ( N e. Odd -> ( ( 8 < N \/ 8 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 153 | 23 152 | sylbid |  |-  ( N e. Odd -> ( 7 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) | 
						
							| 154 | 153 | imp |  |-  ( ( N e. Odd /\ 7 < N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) | 
						
							| 155 | 154 | com12 |  |-  ( N < ; 1 3 -> ( ( N e. Odd /\ 7 < N ) -> N e. GoldbachOdd ) ) | 
						
							| 156 | 155 | 3ad2ant3 |  |-  ( ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) -> ( ( N e. Odd /\ 7 < N ) -> N e. GoldbachOdd ) ) | 
						
							| 157 | 156 | com12 |  |-  ( ( N e. Odd /\ 7 < N ) -> ( ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) -> N e. GoldbachOdd ) ) | 
						
							| 158 | 9 157 | biimtrid |  |-  ( ( N e. Odd /\ 7 < N ) -> ( N e. ( 7 [,) ; 1 3 ) -> N e. GoldbachOdd ) ) | 
						
							| 159 | 158 | 3impia |  |-  ( ( N e. Odd /\ 7 < N /\ N e. ( 7 [,) ; 1 3 ) ) -> N e. GoldbachOdd ) |