| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bgoldbtbnd.m |  |-  ( ph -> M e. ( ZZ>= ` ; 1 1 ) ) | 
						
							| 2 |  | bgoldbtbnd.n |  |-  ( ph -> N e. ( ZZ>= ` ; 1 1 ) ) | 
						
							| 3 |  | bgoldbtbnd.b |  |-  ( ph -> A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) ) | 
						
							| 4 |  | bgoldbtbnd.d |  |-  ( ph -> D e. ( ZZ>= ` 3 ) ) | 
						
							| 5 |  | bgoldbtbnd.f |  |-  ( ph -> F e. ( RePart ` D ) ) | 
						
							| 6 |  | bgoldbtbnd.i |  |-  ( ph -> A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) ) | 
						
							| 7 |  | bgoldbtbnd.0 |  |-  ( ph -> ( F ` 0 ) = 7 ) | 
						
							| 8 |  | bgoldbtbnd.1 |  |-  ( ph -> ( F ` 1 ) = ; 1 3 ) | 
						
							| 9 |  | bgoldbtbnd.l |  |-  ( ph -> M < ( F ` D ) ) | 
						
							| 10 |  | bgoldbtbndlem2.s |  |-  S = ( X - ( F ` ( I - 1 ) ) ) | 
						
							| 11 |  | elfzoelz |  |-  ( I e. ( 1 ..^ D ) -> I e. ZZ ) | 
						
							| 12 |  | elfzoel2 |  |-  ( I e. ( 1 ..^ D ) -> D e. ZZ ) | 
						
							| 13 |  | elfzom1b |  |-  ( ( I e. ZZ /\ D e. ZZ ) -> ( I e. ( 1 ..^ D ) <-> ( I - 1 ) e. ( 0 ..^ ( D - 1 ) ) ) ) | 
						
							| 14 |  | fzossrbm1 |  |-  ( D e. ZZ -> ( 0 ..^ ( D - 1 ) ) C_ ( 0 ..^ D ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( I e. ZZ /\ D e. ZZ ) -> ( 0 ..^ ( D - 1 ) ) C_ ( 0 ..^ D ) ) | 
						
							| 16 | 15 | sseld |  |-  ( ( I e. ZZ /\ D e. ZZ ) -> ( ( I - 1 ) e. ( 0 ..^ ( D - 1 ) ) -> ( I - 1 ) e. ( 0 ..^ D ) ) ) | 
						
							| 17 | 13 16 | sylbid |  |-  ( ( I e. ZZ /\ D e. ZZ ) -> ( I e. ( 1 ..^ D ) -> ( I - 1 ) e. ( 0 ..^ D ) ) ) | 
						
							| 18 | 17 | com12 |  |-  ( I e. ( 1 ..^ D ) -> ( ( I e. ZZ /\ D e. ZZ ) -> ( I - 1 ) e. ( 0 ..^ D ) ) ) | 
						
							| 19 | 11 12 18 | mp2and |  |-  ( I e. ( 1 ..^ D ) -> ( I - 1 ) e. ( 0 ..^ D ) ) | 
						
							| 20 |  | fveq2 |  |-  ( i = ( I - 1 ) -> ( F ` i ) = ( F ` ( I - 1 ) ) ) | 
						
							| 21 | 20 | eleq1d |  |-  ( i = ( I - 1 ) -> ( ( F ` i ) e. ( Prime \ { 2 } ) <-> ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 22 |  | fvoveq1 |  |-  ( i = ( I - 1 ) -> ( F ` ( i + 1 ) ) = ( F ` ( ( I - 1 ) + 1 ) ) ) | 
						
							| 23 | 22 20 | oveq12d |  |-  ( i = ( I - 1 ) -> ( ( F ` ( i + 1 ) ) - ( F ` i ) ) = ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) | 
						
							| 24 | 23 | breq1d |  |-  ( i = ( I - 1 ) -> ( ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) <-> ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) | 
						
							| 25 | 23 | breq2d |  |-  ( i = ( I - 1 ) -> ( 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) <-> 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) | 
						
							| 26 | 21 24 25 | 3anbi123d |  |-  ( i = ( I - 1 ) -> ( ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) <-> ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) ) | 
						
							| 27 | 26 | rspcv |  |-  ( ( I - 1 ) e. ( 0 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) ) | 
						
							| 28 | 19 27 | syl |  |-  ( I e. ( 1 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) ) | 
						
							| 29 | 6 28 | syl5com |  |-  ( ph -> ( I e. ( 1 ..^ D ) -> ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) ) | 
						
							| 30 | 29 | a1d |  |-  ( ph -> ( X e. Odd -> ( I e. ( 1 ..^ D ) -> ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) ) ) | 
						
							| 31 | 30 | 3imp |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) | 
						
							| 32 |  | simp2 |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> X e. Odd ) | 
						
							| 33 |  | oddprmALTV |  |-  ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Odd ) | 
						
							| 34 | 33 | 3ad2ant1 |  |-  ( ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) -> ( F ` ( I - 1 ) ) e. Odd ) | 
						
							| 35 | 32 34 | anim12i |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) -> ( X e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> ( X e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) ) | 
						
							| 37 |  | omoeALTV |  |-  ( ( X e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) -> ( X - ( F ` ( I - 1 ) ) ) e. Even ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> ( X - ( F ` ( I - 1 ) ) ) e. Even ) | 
						
							| 39 | 10 38 | eqeltrid |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> S e. Even ) | 
						
							| 40 | 11 | zcnd |  |-  ( I e. ( 1 ..^ D ) -> I e. CC ) | 
						
							| 41 | 40 | 3ad2ant3 |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> I e. CC ) | 
						
							| 42 |  | npcan1 |  |-  ( I e. CC -> ( ( I - 1 ) + 1 ) = I ) | 
						
							| 43 | 41 42 | syl |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( I - 1 ) + 1 ) = I ) | 
						
							| 44 | 43 | fveq2d |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( F ` ( ( I - 1 ) + 1 ) ) = ( F ` I ) ) | 
						
							| 45 | 44 | oveq1d |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) = ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) | 
						
							| 46 | 45 | breq1d |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) <-> ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) ) -> ( ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) <-> ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) | 
						
							| 48 |  | eldifi |  |-  ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Prime ) | 
						
							| 49 |  | prmz |  |-  ( ( F ` ( I - 1 ) ) e. Prime -> ( F ` ( I - 1 ) ) e. ZZ ) | 
						
							| 50 |  | zre |  |-  ( ( F ` ( I - 1 ) ) e. ZZ -> ( F ` ( I - 1 ) ) e. RR ) | 
						
							| 51 |  | simp1 |  |-  ( ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( F ` i ) e. ( Prime \ { 2 } ) ) | 
						
							| 52 | 51 | ralimi |  |-  ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) ) | 
						
							| 53 |  | fzo0ss1 |  |-  ( 1 ..^ D ) C_ ( 0 ..^ D ) | 
						
							| 54 | 53 | sseli |  |-  ( I e. ( 1 ..^ D ) -> I e. ( 0 ..^ D ) ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> I e. ( 0 ..^ D ) ) | 
						
							| 56 |  | fveq2 |  |-  ( i = I -> ( F ` i ) = ( F ` I ) ) | 
						
							| 57 | 56 | eleq1d |  |-  ( i = I -> ( ( F ` i ) e. ( Prime \ { 2 } ) <-> ( F ` I ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 58 | 57 | rspcv |  |-  ( I e. ( 0 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` I ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 59 | 55 58 | syl |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` I ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 60 | 59 | ex |  |-  ( ph -> ( I e. ( 1 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` I ) e. ( Prime \ { 2 } ) ) ) ) | 
						
							| 61 | 60 | com23 |  |-  ( ph -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( I e. ( 1 ..^ D ) -> ( F ` I ) e. ( Prime \ { 2 } ) ) ) ) | 
						
							| 62 | 61 | a1i |  |-  ( X e. Odd -> ( ph -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( I e. ( 1 ..^ D ) -> ( F ` I ) e. ( Prime \ { 2 } ) ) ) ) ) | 
						
							| 63 | 62 | com13 |  |-  ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( ph -> ( X e. Odd -> ( I e. ( 1 ..^ D ) -> ( F ` I ) e. ( Prime \ { 2 } ) ) ) ) ) | 
						
							| 64 | 52 63 | syl |  |-  ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ph -> ( X e. Odd -> ( I e. ( 1 ..^ D ) -> ( F ` I ) e. ( Prime \ { 2 } ) ) ) ) ) | 
						
							| 65 | 6 64 | mpcom |  |-  ( ph -> ( X e. Odd -> ( I e. ( 1 ..^ D ) -> ( F ` I ) e. ( Prime \ { 2 } ) ) ) ) | 
						
							| 66 | 65 | 3imp |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( F ` I ) e. ( Prime \ { 2 } ) ) | 
						
							| 67 |  | eldifi |  |-  ( ( F ` I ) e. ( Prime \ { 2 } ) -> ( F ` I ) e. Prime ) | 
						
							| 68 |  | prmz |  |-  ( ( F ` I ) e. Prime -> ( F ` I ) e. ZZ ) | 
						
							| 69 |  | zre |  |-  ( ( F ` I ) e. ZZ -> ( F ` I ) e. RR ) | 
						
							| 70 |  | eluzelz |  |-  ( N e. ( ZZ>= ` ; 1 1 ) -> N e. ZZ ) | 
						
							| 71 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 72 |  | oddz |  |-  ( X e. Odd -> X e. ZZ ) | 
						
							| 73 | 72 | zred |  |-  ( X e. Odd -> X e. RR ) | 
						
							| 74 |  | simplr |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> X e. RR ) | 
						
							| 75 |  | simprl |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( F ` I ) e. RR ) | 
						
							| 76 |  | 4re |  |-  4 e. RR | 
						
							| 77 | 76 | a1i |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> 4 e. RR ) | 
						
							| 78 | 74 75 77 | lesubaddd |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( ( X - ( F ` I ) ) <_ 4 <-> X <_ ( 4 + ( F ` I ) ) ) ) | 
						
							| 79 |  | simpllr |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> X e. RR ) | 
						
							| 80 |  | simplrr |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> ( F ` ( I - 1 ) ) e. RR ) | 
						
							| 81 | 79 80 | resubcld |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> ( X - ( F ` ( I - 1 ) ) ) e. RR ) | 
						
							| 82 | 76 | a1i |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> 4 e. RR ) | 
						
							| 83 |  | simplrl |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> ( F ` I ) e. RR ) | 
						
							| 84 | 82 83 | readdcld |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> ( 4 + ( F ` I ) ) e. RR ) | 
						
							| 85 | 84 80 | resubcld |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> ( ( 4 + ( F ` I ) ) - ( F ` ( I - 1 ) ) ) e. RR ) | 
						
							| 86 |  | simplll |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> N e. RR ) | 
						
							| 87 | 77 75 | readdcld |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( 4 + ( F ` I ) ) e. RR ) | 
						
							| 88 |  | simprr |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( F ` ( I - 1 ) ) e. RR ) | 
						
							| 89 | 74 87 88 | lesub1d |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( X <_ ( 4 + ( F ` I ) ) <-> ( X - ( F ` ( I - 1 ) ) ) <_ ( ( 4 + ( F ` I ) ) - ( F ` ( I - 1 ) ) ) ) ) | 
						
							| 90 | 89 | biimpa |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ X <_ ( 4 + ( F ` I ) ) ) -> ( X - ( F ` ( I - 1 ) ) ) <_ ( ( 4 + ( F ` I ) ) - ( F ` ( I - 1 ) ) ) ) | 
						
							| 91 | 90 | adantrr |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> ( X - ( F ` ( I - 1 ) ) ) <_ ( ( 4 + ( F ` I ) ) - ( F ` ( I - 1 ) ) ) ) | 
						
							| 92 |  | resubcl |  |-  ( ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) -> ( ( F ` I ) - ( F ` ( I - 1 ) ) ) e. RR ) | 
						
							| 93 | 92 | adantl |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( ( F ` I ) - ( F ` ( I - 1 ) ) ) e. RR ) | 
						
							| 94 |  | simpll |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> N e. RR ) | 
						
							| 95 |  | ltaddsub2 |  |-  ( ( 4 e. RR /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) e. RR /\ N e. RR ) -> ( ( 4 + ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) < N <-> ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) | 
						
							| 96 | 95 | bicomd |  |-  ( ( 4 e. RR /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) e. RR /\ N e. RR ) -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) <-> ( 4 + ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) < N ) ) | 
						
							| 97 | 77 93 94 96 | syl3anc |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) <-> ( 4 + ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) < N ) ) | 
						
							| 98 | 97 | biimpd |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( 4 + ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) < N ) ) | 
						
							| 99 | 98 | adantld |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) -> ( 4 + ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) < N ) ) | 
						
							| 100 | 99 | imp |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> ( 4 + ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) < N ) | 
						
							| 101 |  | 4cn |  |-  4 e. CC | 
						
							| 102 | 101 | a1i |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> 4 e. CC ) | 
						
							| 103 | 75 | recnd |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( F ` I ) e. CC ) | 
						
							| 104 |  | recn |  |-  ( ( F ` ( I - 1 ) ) e. RR -> ( F ` ( I - 1 ) ) e. CC ) | 
						
							| 105 | 104 | adantl |  |-  ( ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) -> ( F ` ( I - 1 ) ) e. CC ) | 
						
							| 106 | 105 | adantl |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( F ` ( I - 1 ) ) e. CC ) | 
						
							| 107 | 102 103 106 | addsubassd |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( ( 4 + ( F ` I ) ) - ( F ` ( I - 1 ) ) ) = ( 4 + ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) ) | 
						
							| 108 | 107 | breq1d |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( ( ( 4 + ( F ` I ) ) - ( F ` ( I - 1 ) ) ) < N <-> ( 4 + ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) < N ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> ( ( ( 4 + ( F ` I ) ) - ( F ` ( I - 1 ) ) ) < N <-> ( 4 + ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) < N ) ) | 
						
							| 110 | 100 109 | mpbird |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> ( ( 4 + ( F ` I ) ) - ( F ` ( I - 1 ) ) ) < N ) | 
						
							| 111 | 81 85 86 91 110 | lelttrd |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) /\ ( X <_ ( 4 + ( F ` I ) ) /\ ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) ) -> ( X - ( F ` ( I - 1 ) ) ) < N ) | 
						
							| 112 | 111 | exp32 |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( X <_ ( 4 + ( F ` I ) ) -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) | 
						
							| 113 | 78 112 | sylbid |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) | 
						
							| 114 | 113 | com23 |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` I ) e. RR /\ ( F ` ( I - 1 ) ) e. RR ) ) -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) | 
						
							| 115 | 114 | exp32 |  |-  ( ( N e. RR /\ X e. RR ) -> ( ( F ` I ) e. RR -> ( ( F ` ( I - 1 ) ) e. RR -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) ) | 
						
							| 116 | 73 115 | sylan2 |  |-  ( ( N e. RR /\ X e. Odd ) -> ( ( F ` I ) e. RR -> ( ( F ` ( I - 1 ) ) e. RR -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) ) | 
						
							| 117 | 116 | ex |  |-  ( N e. RR -> ( X e. Odd -> ( ( F ` I ) e. RR -> ( ( F ` ( I - 1 ) ) e. RR -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) ) ) | 
						
							| 118 | 2 70 71 117 | 4syl |  |-  ( ph -> ( X e. Odd -> ( ( F ` I ) e. RR -> ( ( F ` ( I - 1 ) ) e. RR -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) ) ) | 
						
							| 119 | 118 | imp |  |-  ( ( ph /\ X e. Odd ) -> ( ( F ` I ) e. RR -> ( ( F ` ( I - 1 ) ) e. RR -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) ) | 
						
							| 120 | 119 | 3adant3 |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( F ` I ) e. RR -> ( ( F ` ( I - 1 ) ) e. RR -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) ) | 
						
							| 121 | 69 120 | syl5com |  |-  ( ( F ` I ) e. ZZ -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( F ` ( I - 1 ) ) e. RR -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) ) | 
						
							| 122 | 67 68 121 | 3syl |  |-  ( ( F ` I ) e. ( Prime \ { 2 } ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( F ` ( I - 1 ) ) e. RR -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) ) | 
						
							| 123 | 66 122 | mpcom |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( F ` ( I - 1 ) ) e. RR -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) | 
						
							| 124 | 50 123 | syl5com |  |-  ( ( F ` ( I - 1 ) ) e. ZZ -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) | 
						
							| 125 | 48 49 124 | 3syl |  |-  ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) | 
						
							| 126 | 125 | impcom |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) ) -> ( ( ( F ` I ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) | 
						
							| 127 | 47 126 | sylbid |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) ) -> ( ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) | 
						
							| 128 | 127 | expcom |  |-  ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) | 
						
							| 129 | 128 | com23 |  |-  ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) ) | 
						
							| 130 | 129 | imp |  |-  ( ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) | 
						
							| 131 | 130 | 3adant3 |  |-  ( ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) | 
						
							| 132 | 131 | impcom |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) -> ( ( X - ( F ` I ) ) <_ 4 -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) | 
						
							| 133 | 132 | com12 |  |-  ( ( X - ( F ` I ) ) <_ 4 -> ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) | 
						
							| 134 | 133 | adantl |  |-  ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) -> ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) -> ( X - ( F ` ( I - 1 ) ) ) < N ) ) | 
						
							| 135 | 134 | impcom |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> ( X - ( F ` ( I - 1 ) ) ) < N ) | 
						
							| 136 | 10 135 | eqbrtrid |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> S < N ) | 
						
							| 137 | 76 | a1i |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> 4 e. RR ) | 
						
							| 138 |  | 1eluzge0 |  |-  1 e. ( ZZ>= ` 0 ) | 
						
							| 139 |  | fzoss1 |  |-  ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ..^ D ) C_ ( 0 ..^ D ) ) | 
						
							| 140 | 138 139 | mp1i |  |-  ( ph -> ( 1 ..^ D ) C_ ( 0 ..^ D ) ) | 
						
							| 141 | 140 | sselda |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> I e. ( 0 ..^ D ) ) | 
						
							| 142 |  | fvoveq1 |  |-  ( i = I -> ( F ` ( i + 1 ) ) = ( F ` ( I + 1 ) ) ) | 
						
							| 143 | 142 56 | oveq12d |  |-  ( i = I -> ( ( F ` ( i + 1 ) ) - ( F ` i ) ) = ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) | 
						
							| 144 | 143 | breq1d |  |-  ( i = I -> ( ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) <-> ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) ) ) | 
						
							| 145 | 143 | breq2d |  |-  ( i = I -> ( 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) <-> 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) | 
						
							| 146 | 57 144 145 | 3anbi123d |  |-  ( i = I -> ( ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) <-> ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) ) | 
						
							| 147 | 146 | rspcv |  |-  ( I e. ( 0 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) ) | 
						
							| 148 | 141 147 | syl |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) ) | 
						
							| 149 | 68 | zred |  |-  ( ( F ` I ) e. Prime -> ( F ` I ) e. RR ) | 
						
							| 150 | 67 149 | syl |  |-  ( ( F ` I ) e. ( Prime \ { 2 } ) -> ( F ` I ) e. RR ) | 
						
							| 151 | 150 | 3ad2ant1 |  |-  ( ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) -> ( F ` I ) e. RR ) | 
						
							| 152 | 148 151 | syl6 |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( F ` I ) e. RR ) ) | 
						
							| 153 | 152 | ex |  |-  ( ph -> ( I e. ( 1 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( F ` I ) e. RR ) ) ) | 
						
							| 154 | 6 153 | mpid |  |-  ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` I ) e. RR ) ) | 
						
							| 155 | 154 | imp |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( F ` I ) e. RR ) | 
						
							| 156 | 155 | 3adant2 |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( F ` I ) e. RR ) | 
						
							| 157 | 156 | ad2antrr |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> ( F ` I ) e. RR ) | 
						
							| 158 | 49 | zred |  |-  ( ( F ` ( I - 1 ) ) e. Prime -> ( F ` ( I - 1 ) ) e. RR ) | 
						
							| 159 | 48 158 | syl |  |-  ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. RR ) | 
						
							| 160 | 159 | 3ad2ant1 |  |-  ( ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) -> ( F ` ( I - 1 ) ) e. RR ) | 
						
							| 161 | 160 | ad2antlr |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> ( F ` ( I - 1 ) ) e. RR ) | 
						
							| 162 | 157 161 | resubcld |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> ( ( F ` I ) - ( F ` ( I - 1 ) ) ) e. RR ) | 
						
							| 163 | 73 | 3ad2ant2 |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> X e. RR ) | 
						
							| 164 |  | resubcl |  |-  ( ( X e. RR /\ ( F ` ( I - 1 ) ) e. RR ) -> ( X - ( F ` ( I - 1 ) ) ) e. RR ) | 
						
							| 165 | 163 160 164 | syl2an |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) -> ( X - ( F ` ( I - 1 ) ) ) e. RR ) | 
						
							| 166 | 165 | adantr |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> ( X - ( F ` ( I - 1 ) ) ) e. RR ) | 
						
							| 167 | 40 42 | syl |  |-  ( I e. ( 1 ..^ D ) -> ( ( I - 1 ) + 1 ) = I ) | 
						
							| 168 | 167 | 3ad2ant3 |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( I - 1 ) + 1 ) = I ) | 
						
							| 169 | 168 | fveq2d |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( F ` ( ( I - 1 ) + 1 ) ) = ( F ` I ) ) | 
						
							| 170 | 169 | oveq1d |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) = ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) | 
						
							| 171 | 170 | breq2d |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) <-> 4 < ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) ) | 
						
							| 172 | 171 | biimpcd |  |-  ( 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> 4 < ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) ) | 
						
							| 173 | 172 | 3ad2ant3 |  |-  ( ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> 4 < ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) ) | 
						
							| 174 | 173 | impcom |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) -> 4 < ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) | 
						
							| 175 | 174 | adantr |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> 4 < ( ( F ` I ) - ( F ` ( I - 1 ) ) ) ) | 
						
							| 176 | 163 | ad2antrr |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> X e. RR ) | 
						
							| 177 |  | eluzge3nn |  |-  ( D e. ( ZZ>= ` 3 ) -> D e. NN ) | 
						
							| 178 | 4 177 | syl |  |-  ( ph -> D e. NN ) | 
						
							| 179 | 178 | adantr |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> D e. NN ) | 
						
							| 180 | 5 | adantr |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> F e. ( RePart ` D ) ) | 
						
							| 181 | 138 139 | mp1i |  |-  ( D e. ( ZZ>= ` 3 ) -> ( 1 ..^ D ) C_ ( 0 ..^ D ) ) | 
						
							| 182 |  | fzossfz |  |-  ( 0 ..^ D ) C_ ( 0 ... D ) | 
						
							| 183 | 181 182 | sstrdi |  |-  ( D e. ( ZZ>= ` 3 ) -> ( 1 ..^ D ) C_ ( 0 ... D ) ) | 
						
							| 184 | 4 183 | syl |  |-  ( ph -> ( 1 ..^ D ) C_ ( 0 ... D ) ) | 
						
							| 185 | 184 | sselda |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> I e. ( 0 ... D ) ) | 
						
							| 186 | 179 180 185 | iccpartxr |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( F ` I ) e. RR* ) | 
						
							| 187 |  | fzofzp1 |  |-  ( I e. ( 0 ..^ D ) -> ( I + 1 ) e. ( 0 ... D ) ) | 
						
							| 188 | 141 187 | syl |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( I + 1 ) e. ( 0 ... D ) ) | 
						
							| 189 | 179 180 188 | iccpartxr |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( F ` ( I + 1 ) ) e. RR* ) | 
						
							| 190 | 186 189 | jca |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( ( F ` I ) e. RR* /\ ( F ` ( I + 1 ) ) e. RR* ) ) | 
						
							| 191 | 190 | 3adant2 |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( F ` I ) e. RR* /\ ( F ` ( I + 1 ) ) e. RR* ) ) | 
						
							| 192 |  | elico1 |  |-  ( ( ( F ` I ) e. RR* /\ ( F ` ( I + 1 ) ) e. RR* ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) <-> ( X e. RR* /\ ( F ` I ) <_ X /\ X < ( F ` ( I + 1 ) ) ) ) ) | 
						
							| 193 | 191 192 | syl |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) <-> ( X e. RR* /\ ( F ` I ) <_ X /\ X < ( F ` ( I + 1 ) ) ) ) ) | 
						
							| 194 |  | simp2 |  |-  ( ( X e. RR* /\ ( F ` I ) <_ X /\ X < ( F ` ( I + 1 ) ) ) -> ( F ` I ) <_ X ) | 
						
							| 195 | 193 194 | biimtrdi |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( F ` I ) <_ X ) ) | 
						
							| 196 | 195 | adantrd |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) -> ( F ` I ) <_ X ) ) | 
						
							| 197 | 196 | adantr |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) -> ( F ` I ) <_ X ) ) | 
						
							| 198 | 197 | imp |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> ( F ` I ) <_ X ) | 
						
							| 199 | 157 176 161 198 | lesub1dd |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> ( ( F ` I ) - ( F ` ( I - 1 ) ) ) <_ ( X - ( F ` ( I - 1 ) ) ) ) | 
						
							| 200 | 137 162 166 175 199 | ltletrd |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> 4 < ( X - ( F ` ( I - 1 ) ) ) ) | 
						
							| 201 | 200 10 | breqtrrdi |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> 4 < S ) | 
						
							| 202 | 39 136 201 | 3jca |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) ) -> ( S e. Even /\ S < N /\ 4 < S ) ) | 
						
							| 203 | 202 | ex |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( ( I - 1 ) + 1 ) ) - ( F ` ( I - 1 ) ) ) ) ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) -> ( S e. Even /\ S < N /\ 4 < S ) ) ) | 
						
							| 204 | 31 203 | mpdan |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) -> ( S e. Even /\ S < N /\ 4 < S ) ) ) |