| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bgoldbtbnd.m |  |-  ( ph -> M e. ( ZZ>= ` ; 1 1 ) ) | 
						
							| 2 |  | bgoldbtbnd.n |  |-  ( ph -> N e. ( ZZ>= ` ; 1 1 ) ) | 
						
							| 3 |  | bgoldbtbnd.b |  |-  ( ph -> A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) ) | 
						
							| 4 |  | bgoldbtbnd.d |  |-  ( ph -> D e. ( ZZ>= ` 3 ) ) | 
						
							| 5 |  | bgoldbtbnd.f |  |-  ( ph -> F e. ( RePart ` D ) ) | 
						
							| 6 |  | bgoldbtbnd.i |  |-  ( ph -> A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) ) | 
						
							| 7 |  | bgoldbtbnd.0 |  |-  ( ph -> ( F ` 0 ) = 7 ) | 
						
							| 8 |  | bgoldbtbnd.1 |  |-  ( ph -> ( F ` 1 ) = ; 1 3 ) | 
						
							| 9 |  | bgoldbtbnd.l |  |-  ( ph -> M < ( F ` D ) ) | 
						
							| 10 |  | bgoldbtbnd.r |  |-  ( ph -> ( F ` D ) e. RR ) | 
						
							| 11 |  | bgoldbtbndlem3.s |  |-  S = ( X - ( F ` I ) ) | 
						
							| 12 |  | fzo0ss1 |  |-  ( 1 ..^ D ) C_ ( 0 ..^ D ) | 
						
							| 13 | 12 | sseli |  |-  ( I e. ( 1 ..^ D ) -> I e. ( 0 ..^ D ) ) | 
						
							| 14 |  | fveq2 |  |-  ( i = I -> ( F ` i ) = ( F ` I ) ) | 
						
							| 15 | 14 | eleq1d |  |-  ( i = I -> ( ( F ` i ) e. ( Prime \ { 2 } ) <-> ( F ` I ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 16 |  | fvoveq1 |  |-  ( i = I -> ( F ` ( i + 1 ) ) = ( F ` ( I + 1 ) ) ) | 
						
							| 17 | 16 14 | oveq12d |  |-  ( i = I -> ( ( F ` ( i + 1 ) ) - ( F ` i ) ) = ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) | 
						
							| 18 | 17 | breq1d |  |-  ( i = I -> ( ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) <-> ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) ) ) | 
						
							| 19 | 17 | breq2d |  |-  ( i = I -> ( 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) <-> 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) | 
						
							| 20 | 15 18 19 | 3anbi123d |  |-  ( i = I -> ( ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) <-> ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) ) | 
						
							| 21 | 20 | rspcv |  |-  ( I e. ( 0 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) ) | 
						
							| 22 | 13 6 21 | syl2imc |  |-  ( ph -> ( I e. ( 1 ..^ D ) -> ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) ) | 
						
							| 23 | 22 | a1d |  |-  ( ph -> ( X e. Odd -> ( I e. ( 1 ..^ D ) -> ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) ) ) | 
						
							| 24 | 23 | 3imp |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) | 
						
							| 25 |  | simp2 |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> X e. Odd ) | 
						
							| 26 |  | oddprmALTV |  |-  ( ( F ` I ) e. ( Prime \ { 2 } ) -> ( F ` I ) e. Odd ) | 
						
							| 27 | 26 | 3ad2ant1 |  |-  ( ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) -> ( F ` I ) e. Odd ) | 
						
							| 28 | 25 27 | anim12i |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) -> ( X e. Odd /\ ( F ` I ) e. Odd ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ 4 < S ) ) -> ( X e. Odd /\ ( F ` I ) e. Odd ) ) | 
						
							| 30 |  | omoeALTV |  |-  ( ( X e. Odd /\ ( F ` I ) e. Odd ) -> ( X - ( F ` I ) ) e. Even ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ 4 < S ) ) -> ( X - ( F ` I ) ) e. Even ) | 
						
							| 32 | 11 31 | eqeltrid |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ 4 < S ) ) -> S e. Even ) | 
						
							| 33 |  | eldifi |  |-  ( ( F ` I ) e. ( Prime \ { 2 } ) -> ( F ` I ) e. Prime ) | 
						
							| 34 |  | prmz |  |-  ( ( F ` I ) e. Prime -> ( F ` I ) e. ZZ ) | 
						
							| 35 | 34 | zred |  |-  ( ( F ` I ) e. Prime -> ( F ` I ) e. RR ) | 
						
							| 36 |  | fzofzp1 |  |-  ( I e. ( 1 ..^ D ) -> ( I + 1 ) e. ( 1 ... D ) ) | 
						
							| 37 |  | elfzo2 |  |-  ( I e. ( 1 ..^ D ) <-> ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ /\ I < D ) ) | 
						
							| 38 |  | 1zzd |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ /\ I < D ) -> 1 e. ZZ ) | 
						
							| 39 |  | simp2 |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ /\ I < D ) -> D e. ZZ ) | 
						
							| 40 |  | eluz2 |  |-  ( I e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ I e. ZZ /\ 1 <_ I ) ) | 
						
							| 41 |  | zre |  |-  ( 1 e. ZZ -> 1 e. RR ) | 
						
							| 42 |  | zre |  |-  ( I e. ZZ -> I e. RR ) | 
						
							| 43 |  | zre |  |-  ( D e. ZZ -> D e. RR ) | 
						
							| 44 |  | leltletr |  |-  ( ( 1 e. RR /\ I e. RR /\ D e. RR ) -> ( ( 1 <_ I /\ I < D ) -> 1 <_ D ) ) | 
						
							| 45 | 41 42 43 44 | syl3an |  |-  ( ( 1 e. ZZ /\ I e. ZZ /\ D e. ZZ ) -> ( ( 1 <_ I /\ I < D ) -> 1 <_ D ) ) | 
						
							| 46 | 45 | exp5o |  |-  ( 1 e. ZZ -> ( I e. ZZ -> ( D e. ZZ -> ( 1 <_ I -> ( I < D -> 1 <_ D ) ) ) ) ) | 
						
							| 47 | 46 | com34 |  |-  ( 1 e. ZZ -> ( I e. ZZ -> ( 1 <_ I -> ( D e. ZZ -> ( I < D -> 1 <_ D ) ) ) ) ) | 
						
							| 48 | 47 | 3imp |  |-  ( ( 1 e. ZZ /\ I e. ZZ /\ 1 <_ I ) -> ( D e. ZZ -> ( I < D -> 1 <_ D ) ) ) | 
						
							| 49 | 40 48 | sylbi |  |-  ( I e. ( ZZ>= ` 1 ) -> ( D e. ZZ -> ( I < D -> 1 <_ D ) ) ) | 
						
							| 50 | 49 | 3imp |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ /\ I < D ) -> 1 <_ D ) | 
						
							| 51 |  | eluz2 |  |-  ( D e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ D e. ZZ /\ 1 <_ D ) ) | 
						
							| 52 | 38 39 50 51 | syl3anbrc |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ /\ I < D ) -> D e. ( ZZ>= ` 1 ) ) | 
						
							| 53 | 37 52 | sylbi |  |-  ( I e. ( 1 ..^ D ) -> D e. ( ZZ>= ` 1 ) ) | 
						
							| 54 |  | fzisfzounsn |  |-  ( D e. ( ZZ>= ` 1 ) -> ( 1 ... D ) = ( ( 1 ..^ D ) u. { D } ) ) | 
						
							| 55 | 53 54 | syl |  |-  ( I e. ( 1 ..^ D ) -> ( 1 ... D ) = ( ( 1 ..^ D ) u. { D } ) ) | 
						
							| 56 | 55 | eleq2d |  |-  ( I e. ( 1 ..^ D ) -> ( ( I + 1 ) e. ( 1 ... D ) <-> ( I + 1 ) e. ( ( 1 ..^ D ) u. { D } ) ) ) | 
						
							| 57 |  | elun |  |-  ( ( I + 1 ) e. ( ( 1 ..^ D ) u. { D } ) <-> ( ( I + 1 ) e. ( 1 ..^ D ) \/ ( I + 1 ) e. { D } ) ) | 
						
							| 58 | 56 57 | bitrdi |  |-  ( I e. ( 1 ..^ D ) -> ( ( I + 1 ) e. ( 1 ... D ) <-> ( ( I + 1 ) e. ( 1 ..^ D ) \/ ( I + 1 ) e. { D } ) ) ) | 
						
							| 59 |  | eluzge3nn |  |-  ( D e. ( ZZ>= ` 3 ) -> D e. NN ) | 
						
							| 60 | 4 59 | syl |  |-  ( ph -> D e. NN ) | 
						
							| 61 | 60 | ad2antrl |  |-  ( ( ( I e. ( 1 ..^ D ) /\ ( I + 1 ) e. ( 1 ..^ D ) ) /\ ( ph /\ X e. Odd ) ) -> D e. NN ) | 
						
							| 62 | 5 | ad2antrl |  |-  ( ( ( I e. ( 1 ..^ D ) /\ ( I + 1 ) e. ( 1 ..^ D ) ) /\ ( ph /\ X e. Odd ) ) -> F e. ( RePart ` D ) ) | 
						
							| 63 |  | simplr |  |-  ( ( ( I e. ( 1 ..^ D ) /\ ( I + 1 ) e. ( 1 ..^ D ) ) /\ ( ph /\ X e. Odd ) ) -> ( I + 1 ) e. ( 1 ..^ D ) ) | 
						
							| 64 | 61 62 63 | iccpartipre |  |-  ( ( ( I e. ( 1 ..^ D ) /\ ( I + 1 ) e. ( 1 ..^ D ) ) /\ ( ph /\ X e. Odd ) ) -> ( F ` ( I + 1 ) ) e. RR ) | 
						
							| 65 | 64 | exp31 |  |-  ( I e. ( 1 ..^ D ) -> ( ( I + 1 ) e. ( 1 ..^ D ) -> ( ( ph /\ X e. Odd ) -> ( F ` ( I + 1 ) ) e. RR ) ) ) | 
						
							| 66 |  | elsni |  |-  ( ( I + 1 ) e. { D } -> ( I + 1 ) = D ) | 
						
							| 67 | 10 | ad2antrl |  |-  ( ( ( I + 1 ) = D /\ ( ph /\ X e. Odd ) ) -> ( F ` D ) e. RR ) | 
						
							| 68 |  | fveq2 |  |-  ( ( I + 1 ) = D -> ( F ` ( I + 1 ) ) = ( F ` D ) ) | 
						
							| 69 | 68 | eleq1d |  |-  ( ( I + 1 ) = D -> ( ( F ` ( I + 1 ) ) e. RR <-> ( F ` D ) e. RR ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( I + 1 ) = D /\ ( ph /\ X e. Odd ) ) -> ( ( F ` ( I + 1 ) ) e. RR <-> ( F ` D ) e. RR ) ) | 
						
							| 71 | 67 70 | mpbird |  |-  ( ( ( I + 1 ) = D /\ ( ph /\ X e. Odd ) ) -> ( F ` ( I + 1 ) ) e. RR ) | 
						
							| 72 | 71 | ex |  |-  ( ( I + 1 ) = D -> ( ( ph /\ X e. Odd ) -> ( F ` ( I + 1 ) ) e. RR ) ) | 
						
							| 73 | 66 72 | syl |  |-  ( ( I + 1 ) e. { D } -> ( ( ph /\ X e. Odd ) -> ( F ` ( I + 1 ) ) e. RR ) ) | 
						
							| 74 | 73 | a1i |  |-  ( I e. ( 1 ..^ D ) -> ( ( I + 1 ) e. { D } -> ( ( ph /\ X e. Odd ) -> ( F ` ( I + 1 ) ) e. RR ) ) ) | 
						
							| 75 | 65 74 | jaod |  |-  ( I e. ( 1 ..^ D ) -> ( ( ( I + 1 ) e. ( 1 ..^ D ) \/ ( I + 1 ) e. { D } ) -> ( ( ph /\ X e. Odd ) -> ( F ` ( I + 1 ) ) e. RR ) ) ) | 
						
							| 76 | 58 75 | sylbid |  |-  ( I e. ( 1 ..^ D ) -> ( ( I + 1 ) e. ( 1 ... D ) -> ( ( ph /\ X e. Odd ) -> ( F ` ( I + 1 ) ) e. RR ) ) ) | 
						
							| 77 | 36 76 | mpd |  |-  ( I e. ( 1 ..^ D ) -> ( ( ph /\ X e. Odd ) -> ( F ` ( I + 1 ) ) e. RR ) ) | 
						
							| 78 | 77 | com12 |  |-  ( ( ph /\ X e. Odd ) -> ( I e. ( 1 ..^ D ) -> ( F ` ( I + 1 ) ) e. RR ) ) | 
						
							| 79 | 78 | 3impia |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( F ` ( I + 1 ) ) e. RR ) | 
						
							| 80 |  | eluzelre |  |-  ( N e. ( ZZ>= ` ; 1 1 ) -> N e. RR ) | 
						
							| 81 | 2 80 | syl |  |-  ( ph -> N e. RR ) | 
						
							| 82 |  | oddz |  |-  ( X e. Odd -> X e. ZZ ) | 
						
							| 83 | 82 | zred |  |-  ( X e. Odd -> X e. RR ) | 
						
							| 84 |  | rexr |  |-  ( ( F ` ( I + 1 ) ) e. RR -> ( F ` ( I + 1 ) ) e. RR* ) | 
						
							| 85 |  | rexr |  |-  ( ( F ` I ) e. RR -> ( F ` I ) e. RR* ) | 
						
							| 86 | 84 85 | anim12ci |  |-  ( ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) -> ( ( F ` I ) e. RR* /\ ( F ` ( I + 1 ) ) e. RR* ) ) | 
						
							| 87 | 86 | adantl |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( ( F ` I ) e. RR* /\ ( F ` ( I + 1 ) ) e. RR* ) ) | 
						
							| 88 |  | elico1 |  |-  ( ( ( F ` I ) e. RR* /\ ( F ` ( I + 1 ) ) e. RR* ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) <-> ( X e. RR* /\ ( F ` I ) <_ X /\ X < ( F ` ( I + 1 ) ) ) ) ) | 
						
							| 89 | 87 88 | syl |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) <-> ( X e. RR* /\ ( F ` I ) <_ X /\ X < ( F ` ( I + 1 ) ) ) ) ) | 
						
							| 90 |  | simpllr |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> X e. RR ) | 
						
							| 91 |  | simplrl |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> ( F ` ( I + 1 ) ) e. RR ) | 
						
							| 92 |  | simplrr |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> ( F ` I ) e. RR ) | 
						
							| 93 |  | simpr |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> X < ( F ` ( I + 1 ) ) ) | 
						
							| 94 | 90 91 92 93 | ltsub1dd |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) | 
						
							| 95 |  | simplr |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> X e. RR ) | 
						
							| 96 |  | simprr |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( F ` I ) e. RR ) | 
						
							| 97 | 95 96 | resubcld |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( X - ( F ` I ) ) e. RR ) | 
						
							| 98 | 97 | adantr |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) e. RR ) | 
						
							| 99 | 91 92 | resubcld |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> ( ( F ` ( I + 1 ) ) - ( F ` I ) ) e. RR ) | 
						
							| 100 |  | simplll |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> N e. RR ) | 
						
							| 101 |  | 4re |  |-  4 e. RR | 
						
							| 102 | 101 | a1i |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> 4 e. RR ) | 
						
							| 103 | 100 102 | resubcld |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> ( N - 4 ) e. RR ) | 
						
							| 104 |  | lttr |  |-  ( ( ( X - ( F ` I ) ) e. RR /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) e. RR /\ ( N - 4 ) e. RR ) -> ( ( ( X - ( F ` I ) ) < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) ) -> ( X - ( F ` I ) ) < ( N - 4 ) ) ) | 
						
							| 105 | 98 99 103 104 | syl3anc |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> ( ( ( X - ( F ` I ) ) < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) ) -> ( X - ( F ` I ) ) < ( N - 4 ) ) ) | 
						
							| 106 | 94 105 | mpand |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ X < ( F ` ( I + 1 ) ) ) -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( X - ( F ` I ) ) < ( N - 4 ) ) ) | 
						
							| 107 | 106 | impr |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ ( X < ( F ` ( I + 1 ) ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) ) ) -> ( X - ( F ` I ) ) < ( N - 4 ) ) | 
						
							| 108 |  | 4pos |  |-  0 < 4 | 
						
							| 109 | 101 | a1i |  |-  ( ( N e. RR /\ X e. RR ) -> 4 e. RR ) | 
						
							| 110 |  | simpl |  |-  ( ( N e. RR /\ X e. RR ) -> N e. RR ) | 
						
							| 111 | 109 110 | ltsubposd |  |-  ( ( N e. RR /\ X e. RR ) -> ( 0 < 4 <-> ( N - 4 ) < N ) ) | 
						
							| 112 | 108 111 | mpbii |  |-  ( ( N e. RR /\ X e. RR ) -> ( N - 4 ) < N ) | 
						
							| 113 | 112 | adantr |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( N - 4 ) < N ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ ( X < ( F ` ( I + 1 ) ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) ) ) -> ( N - 4 ) < N ) | 
						
							| 115 |  | simpll |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> N e. RR ) | 
						
							| 116 | 101 | a1i |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> 4 e. RR ) | 
						
							| 117 | 115 116 | resubcld |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( N - 4 ) e. RR ) | 
						
							| 118 |  | lttr |  |-  ( ( ( X - ( F ` I ) ) e. RR /\ ( N - 4 ) e. RR /\ N e. RR ) -> ( ( ( X - ( F ` I ) ) < ( N - 4 ) /\ ( N - 4 ) < N ) -> ( X - ( F ` I ) ) < N ) ) | 
						
							| 119 | 97 117 115 118 | syl3anc |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( ( ( X - ( F ` I ) ) < ( N - 4 ) /\ ( N - 4 ) < N ) -> ( X - ( F ` I ) ) < N ) ) | 
						
							| 120 | 119 | adantr |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ ( X < ( F ` ( I + 1 ) ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) ) ) -> ( ( ( X - ( F ` I ) ) < ( N - 4 ) /\ ( N - 4 ) < N ) -> ( X - ( F ` I ) ) < N ) ) | 
						
							| 121 | 107 114 120 | mp2and |  |-  ( ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) /\ ( X < ( F ` ( I + 1 ) ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) ) ) -> ( X - ( F ` I ) ) < N ) | 
						
							| 122 | 121 | exp32 |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( X < ( F ` ( I + 1 ) ) -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( X - ( F ` I ) ) < N ) ) ) | 
						
							| 123 | 122 | com12 |  |-  ( X < ( F ` ( I + 1 ) ) -> ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( X - ( F ` I ) ) < N ) ) ) | 
						
							| 124 | 123 | 3ad2ant3 |  |-  ( ( X e. RR* /\ ( F ` I ) <_ X /\ X < ( F ` ( I + 1 ) ) ) -> ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( X - ( F ` I ) ) < N ) ) ) | 
						
							| 125 | 124 | com12 |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( ( X e. RR* /\ ( F ` I ) <_ X /\ X < ( F ` ( I + 1 ) ) ) -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( X - ( F ` I ) ) < N ) ) ) | 
						
							| 126 | 89 125 | sylbid |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( X - ( F ` I ) ) < N ) ) ) | 
						
							| 127 | 126 | com23 |  |-  ( ( ( N e. RR /\ X e. RR ) /\ ( ( F ` ( I + 1 ) ) e. RR /\ ( F ` I ) e. RR ) ) -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < N ) ) ) | 
						
							| 128 | 127 | exp32 |  |-  ( ( N e. RR /\ X e. RR ) -> ( ( F ` ( I + 1 ) ) e. RR -> ( ( F ` I ) e. RR -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < N ) ) ) ) ) | 
						
							| 129 | 128 | com34 |  |-  ( ( N e. RR /\ X e. RR ) -> ( ( F ` ( I + 1 ) ) e. RR -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( ( F ` I ) e. RR -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < N ) ) ) ) ) | 
						
							| 130 | 81 83 129 | syl2an |  |-  ( ( ph /\ X e. Odd ) -> ( ( F ` ( I + 1 ) ) e. RR -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( ( F ` I ) e. RR -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < N ) ) ) ) ) | 
						
							| 131 | 130 | 3adant3 |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( F ` ( I + 1 ) ) e. RR -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( ( F ` I ) e. RR -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < N ) ) ) ) ) | 
						
							| 132 | 79 131 | mpd |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( ( F ` I ) e. RR -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < N ) ) ) ) | 
						
							| 133 | 132 | com13 |  |-  ( ( F ` I ) e. RR -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < N ) ) ) ) | 
						
							| 134 | 33 35 133 | 3syl |  |-  ( ( F ` I ) e. ( Prime \ { 2 } ) -> ( ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < N ) ) ) ) | 
						
							| 135 | 134 | imp |  |-  ( ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < N ) ) ) | 
						
							| 136 | 135 | 3adant3 |  |-  ( ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) -> ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < N ) ) ) | 
						
							| 137 | 136 | impcom |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) -> ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) -> ( X - ( F ` I ) ) < N ) ) | 
						
							| 138 | 137 | imp |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) /\ X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) ) -> ( X - ( F ` I ) ) < N ) | 
						
							| 139 | 138 | adantrr |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ 4 < S ) ) -> ( X - ( F ` I ) ) < N ) | 
						
							| 140 | 11 139 | eqbrtrid |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ 4 < S ) ) -> S < N ) | 
						
							| 141 |  | simprr |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ 4 < S ) ) -> 4 < S ) | 
						
							| 142 | 32 140 141 | 3jca |  |-  ( ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) /\ ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ 4 < S ) ) -> ( S e. Even /\ S < N /\ 4 < S ) ) | 
						
							| 143 | 142 | ex |  |-  ( ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) /\ ( ( F ` I ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( I + 1 ) ) - ( F ` I ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( I + 1 ) ) - ( F ` I ) ) ) ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ 4 < S ) -> ( S e. Even /\ S < N /\ 4 < S ) ) ) | 
						
							| 144 | 24 143 | mpdan |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ 4 < S ) -> ( S e. Even /\ S < N /\ 4 < S ) ) ) |