| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bgoldbtbnd.m |  |-  ( ph -> M e. ( ZZ>= ` ; 1 1 ) ) | 
						
							| 2 |  | bgoldbtbnd.n |  |-  ( ph -> N e. ( ZZ>= ` ; 1 1 ) ) | 
						
							| 3 |  | bgoldbtbnd.b |  |-  ( ph -> A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) ) | 
						
							| 4 |  | bgoldbtbnd.d |  |-  ( ph -> D e. ( ZZ>= ` 3 ) ) | 
						
							| 5 |  | bgoldbtbnd.f |  |-  ( ph -> F e. ( RePart ` D ) ) | 
						
							| 6 |  | bgoldbtbnd.i |  |-  ( ph -> A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) ) | 
						
							| 7 |  | bgoldbtbnd.0 |  |-  ( ph -> ( F ` 0 ) = 7 ) | 
						
							| 8 |  | bgoldbtbnd.1 |  |-  ( ph -> ( F ` 1 ) = ; 1 3 ) | 
						
							| 9 |  | bgoldbtbnd.l |  |-  ( ph -> M < ( F ` D ) ) | 
						
							| 10 |  | bgoldbtbnd.r |  |-  ( ph -> ( F ` D ) e. RR ) | 
						
							| 11 |  | simpll |  |-  ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> ph ) | 
						
							| 12 |  | simpr |  |-  ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> X e. Odd ) | 
						
							| 13 |  | simplr |  |-  ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> I e. ( 1 ..^ D ) ) | 
						
							| 14 |  | eqid |  |-  ( X - ( F ` ( I - 1 ) ) ) = ( X - ( F ` ( I - 1 ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 14 | bgoldbtbndlem2 |  |-  ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) -> ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) ) ) | 
						
							| 16 | 11 12 13 15 | syl3anc |  |-  ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) -> ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) ) ) | 
						
							| 17 |  | breq2 |  |-  ( n = m -> ( 4 < n <-> 4 < m ) ) | 
						
							| 18 |  | breq1 |  |-  ( n = m -> ( n < N <-> m < N ) ) | 
						
							| 19 | 17 18 | anbi12d |  |-  ( n = m -> ( ( 4 < n /\ n < N ) <-> ( 4 < m /\ m < N ) ) ) | 
						
							| 20 |  | eleq1 |  |-  ( n = m -> ( n e. GoldbachEven <-> m e. GoldbachEven ) ) | 
						
							| 21 | 19 20 | imbi12d |  |-  ( n = m -> ( ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) <-> ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) ) ) | 
						
							| 22 | 21 | cbvralvw |  |-  ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) <-> A. m e. Even ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) ) | 
						
							| 23 |  | breq2 |  |-  ( m = ( X - ( F ` ( I - 1 ) ) ) -> ( 4 < m <-> 4 < ( X - ( F ` ( I - 1 ) ) ) ) ) | 
						
							| 24 |  | breq1 |  |-  ( m = ( X - ( F ` ( I - 1 ) ) ) -> ( m < N <-> ( X - ( F ` ( I - 1 ) ) ) < N ) ) | 
						
							| 25 | 23 24 | anbi12d |  |-  ( m = ( X - ( F ` ( I - 1 ) ) ) -> ( ( 4 < m /\ m < N ) <-> ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) | 
						
							| 26 |  | eleq1 |  |-  ( m = ( X - ( F ` ( I - 1 ) ) ) -> ( m e. GoldbachEven <-> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) ) | 
						
							| 27 | 25 26 | imbi12d |  |-  ( m = ( X - ( F ` ( I - 1 ) ) ) -> ( ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) <-> ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) ) ) | 
						
							| 28 | 27 | rspcv |  |-  ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( A. m e. Even ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) -> ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) ) ) | 
						
							| 29 | 22 28 | biimtrid |  |-  ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) ) ) | 
						
							| 30 |  | id |  |-  ( ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) -> ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) ) | 
						
							| 31 |  | isgbe |  |-  ( ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven <-> ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) ) | 
						
							| 32 |  | simp1 |  |-  ( ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( F ` i ) e. ( Prime \ { 2 } ) ) | 
						
							| 33 | 32 | ralimi |  |-  ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) ) | 
						
							| 34 |  | elfzo1 |  |-  ( I e. ( 1 ..^ D ) <-> ( I e. NN /\ D e. NN /\ I < D ) ) | 
						
							| 35 |  | nnm1nn0 |  |-  ( I e. NN -> ( I - 1 ) e. NN0 ) | 
						
							| 36 | 35 | 3ad2ant1 |  |-  ( ( I e. NN /\ D e. NN /\ I < D ) -> ( I - 1 ) e. NN0 ) | 
						
							| 37 | 34 36 | sylbi |  |-  ( I e. ( 1 ..^ D ) -> ( I - 1 ) e. NN0 ) | 
						
							| 38 | 37 | a1i |  |-  ( D e. ( ZZ>= ` 3 ) -> ( I e. ( 1 ..^ D ) -> ( I - 1 ) e. NN0 ) ) | 
						
							| 39 |  | eluzge3nn |  |-  ( D e. ( ZZ>= ` 3 ) -> D e. NN ) | 
						
							| 40 | 39 | a1d |  |-  ( D e. ( ZZ>= ` 3 ) -> ( I e. ( 1 ..^ D ) -> D e. NN ) ) | 
						
							| 41 |  | elfzo2 |  |-  ( I e. ( 1 ..^ D ) <-> ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ /\ I < D ) ) | 
						
							| 42 |  | eluzelre |  |-  ( I e. ( ZZ>= ` 1 ) -> I e. RR ) | 
						
							| 43 | 42 | adantr |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> I e. RR ) | 
						
							| 44 | 43 | ltm1d |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> ( I - 1 ) < I ) | 
						
							| 45 |  | 1red |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> 1 e. RR ) | 
						
							| 46 | 43 45 | resubcld |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> ( I - 1 ) e. RR ) | 
						
							| 47 |  | zre |  |-  ( D e. ZZ -> D e. RR ) | 
						
							| 48 | 47 | adantl |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> D e. RR ) | 
						
							| 49 |  | lttr |  |-  ( ( ( I - 1 ) e. RR /\ I e. RR /\ D e. RR ) -> ( ( ( I - 1 ) < I /\ I < D ) -> ( I - 1 ) < D ) ) | 
						
							| 50 | 46 43 48 49 | syl3anc |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> ( ( ( I - 1 ) < I /\ I < D ) -> ( I - 1 ) < D ) ) | 
						
							| 51 | 44 50 | mpand |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> ( I < D -> ( I - 1 ) < D ) ) | 
						
							| 52 | 51 | 3impia |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ /\ I < D ) -> ( I - 1 ) < D ) | 
						
							| 53 | 41 52 | sylbi |  |-  ( I e. ( 1 ..^ D ) -> ( I - 1 ) < D ) | 
						
							| 54 | 53 | a1i |  |-  ( D e. ( ZZ>= ` 3 ) -> ( I e. ( 1 ..^ D ) -> ( I - 1 ) < D ) ) | 
						
							| 55 | 38 40 54 | 3jcad |  |-  ( D e. ( ZZ>= ` 3 ) -> ( I e. ( 1 ..^ D ) -> ( ( I - 1 ) e. NN0 /\ D e. NN /\ ( I - 1 ) < D ) ) ) | 
						
							| 56 | 4 55 | syl |  |-  ( ph -> ( I e. ( 1 ..^ D ) -> ( ( I - 1 ) e. NN0 /\ D e. NN /\ ( I - 1 ) < D ) ) ) | 
						
							| 57 | 56 | imp |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( ( I - 1 ) e. NN0 /\ D e. NN /\ ( I - 1 ) < D ) ) | 
						
							| 58 |  | elfzo0 |  |-  ( ( I - 1 ) e. ( 0 ..^ D ) <-> ( ( I - 1 ) e. NN0 /\ D e. NN /\ ( I - 1 ) < D ) ) | 
						
							| 59 | 57 58 | sylibr |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( I - 1 ) e. ( 0 ..^ D ) ) | 
						
							| 60 |  | fveq2 |  |-  ( i = ( I - 1 ) -> ( F ` i ) = ( F ` ( I - 1 ) ) ) | 
						
							| 61 | 60 | eleq1d |  |-  ( i = ( I - 1 ) -> ( ( F ` i ) e. ( Prime \ { 2 } ) <-> ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 62 | 61 | rspcv |  |-  ( ( I - 1 ) e. ( 0 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 63 | 59 62 | syl |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 64 |  | eldifi |  |-  ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Prime ) | 
						
							| 65 | 63 64 | syl6 |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Prime ) ) | 
						
							| 66 | 65 | expcom |  |-  ( I e. ( 1 ..^ D ) -> ( ph -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Prime ) ) ) | 
						
							| 67 | 66 | com13 |  |-  ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Prime ) ) ) | 
						
							| 68 | 33 67 | syl |  |-  ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Prime ) ) ) | 
						
							| 69 | 6 68 | mpcom |  |-  ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Prime ) ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Prime ) ) | 
						
							| 71 | 70 | imp |  |-  ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) -> ( F ` ( I - 1 ) ) e. Prime ) | 
						
							| 72 | 71 | ad2antrr |  |-  ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) -> ( F ` ( I - 1 ) ) e. Prime ) | 
						
							| 73 | 72 | ad2antrr |  |-  ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> ( F ` ( I - 1 ) ) e. Prime ) | 
						
							| 74 |  | eleq1 |  |-  ( r = ( F ` ( I - 1 ) ) -> ( r e. Odd <-> ( F ` ( I - 1 ) ) e. Odd ) ) | 
						
							| 75 | 74 | 3anbi3d |  |-  ( r = ( F ` ( I - 1 ) ) -> ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) <-> ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) ) ) | 
						
							| 76 |  | oveq2 |  |-  ( r = ( F ` ( I - 1 ) ) -> ( ( p + q ) + r ) = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) | 
						
							| 77 | 76 | eqeq2d |  |-  ( r = ( F ` ( I - 1 ) ) -> ( X = ( ( p + q ) + r ) <-> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) | 
						
							| 78 | 75 77 | anbi12d |  |-  ( r = ( F ` ( I - 1 ) ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) /\ X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) ) | 
						
							| 79 | 78 | adantl |  |-  ( ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) /\ r = ( F ` ( I - 1 ) ) ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) /\ X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) ) | 
						
							| 80 |  | oddprmALTV |  |-  ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Odd ) | 
						
							| 81 | 63 80 | syl6 |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Odd ) ) | 
						
							| 82 | 81 | expcom |  |-  ( I e. ( 1 ..^ D ) -> ( ph -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Odd ) ) ) | 
						
							| 83 | 82 | com13 |  |-  ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Odd ) ) ) | 
						
							| 84 | 33 83 | syl |  |-  ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Odd ) ) ) | 
						
							| 85 | 6 84 | mpcom |  |-  ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Odd ) ) | 
						
							| 86 | 85 | adantl |  |-  ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Odd ) ) | 
						
							| 87 | 86 | imp |  |-  ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) -> ( F ` ( I - 1 ) ) e. Odd ) | 
						
							| 88 | 87 | ad3antrrr |  |-  ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> ( F ` ( I - 1 ) ) e. Odd ) | 
						
							| 89 |  | 3simpa |  |-  ( ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> ( p e. Odd /\ q e. Odd ) ) | 
						
							| 90 | 88 89 | anim12ci |  |-  ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> ( ( p e. Odd /\ q e. Odd ) /\ ( F ` ( I - 1 ) ) e. Odd ) ) | 
						
							| 91 |  | df-3an |  |-  ( ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) <-> ( ( p e. Odd /\ q e. Odd ) /\ ( F ` ( I - 1 ) ) e. Odd ) ) | 
						
							| 92 | 90 91 | sylibr |  |-  ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) ) | 
						
							| 93 |  | oddz |  |-  ( X e. Odd -> X e. ZZ ) | 
						
							| 94 | 93 | zcnd |  |-  ( X e. Odd -> X e. CC ) | 
						
							| 95 | 94 | adantl |  |-  ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> X e. CC ) | 
						
							| 96 | 95 | ad2antrr |  |-  ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> X e. CC ) | 
						
							| 97 | 96 | adantl |  |-  ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) ) -> X e. CC ) | 
						
							| 98 |  | prmz |  |-  ( ( F ` ( I - 1 ) ) e. Prime -> ( F ` ( I - 1 ) ) e. ZZ ) | 
						
							| 99 | 98 | zcnd |  |-  ( ( F ` ( I - 1 ) ) e. Prime -> ( F ` ( I - 1 ) ) e. CC ) | 
						
							| 100 | 64 99 | syl |  |-  ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. CC ) | 
						
							| 101 | 63 100 | syl6 |  |-  ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. CC ) ) | 
						
							| 102 | 101 | expcom |  |-  ( I e. ( 1 ..^ D ) -> ( ph -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. CC ) ) ) | 
						
							| 103 | 102 | com13 |  |-  ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. CC ) ) ) | 
						
							| 104 | 33 103 | syl |  |-  ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. CC ) ) ) | 
						
							| 105 | 6 104 | mpcom |  |-  ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. CC ) ) | 
						
							| 106 | 105 | adantl |  |-  ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. CC ) ) | 
						
							| 107 | 106 | imp |  |-  ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) -> ( F ` ( I - 1 ) ) e. CC ) | 
						
							| 108 | 107 | ad3antrrr |  |-  ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> ( F ` ( I - 1 ) ) e. CC ) | 
						
							| 109 | 108 | adantl |  |-  ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) ) -> ( F ` ( I - 1 ) ) e. CC ) | 
						
							| 110 | 97 109 | npcand |  |-  ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) ) -> ( ( X - ( F ` ( I - 1 ) ) ) + ( F ` ( I - 1 ) ) ) = X ) | 
						
							| 111 |  | oveq1 |  |-  ( ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) -> ( ( X - ( F ` ( I - 1 ) ) ) + ( F ` ( I - 1 ) ) ) = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) | 
						
							| 112 | 110 111 | sylan9req |  |-  ( ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) ) /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) | 
						
							| 113 | 112 | exp31 |  |-  ( ( p e. Odd /\ q e. Odd ) -> ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) -> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) ) | 
						
							| 114 | 113 | com23 |  |-  ( ( p e. Odd /\ q e. Odd ) -> ( ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) -> ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) ) | 
						
							| 115 | 114 | 3impia |  |-  ( ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) | 
						
							| 116 | 115 | impcom |  |-  ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) | 
						
							| 117 | 92 116 | jca |  |-  ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> ( ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) /\ X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) | 
						
							| 118 | 73 79 117 | rspcedvd |  |-  ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) | 
						
							| 119 | 118 | ex |  |-  ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) | 
						
							| 120 | 119 | reximdva |  |-  ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) -> ( E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) | 
						
							| 121 | 120 | reximdva |  |-  ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) | 
						
							| 122 | 121 | exp41 |  |-  ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( ph -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) | 
						
							| 123 | 122 | com25 |  |-  ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) | 
						
							| 124 | 123 | imp |  |-  ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) | 
						
							| 125 | 31 124 | sylbi |  |-  ( ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) | 
						
							| 126 | 125 | a1d |  |-  ( ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven -> ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) | 
						
							| 127 | 30 126 | syl6com |  |-  ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) -> ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) ) | 
						
							| 128 | 127 | ancoms |  |-  ( ( ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> ( ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) -> ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) ) | 
						
							| 129 | 128 | com13 |  |-  ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) -> ( ( ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) ) | 
						
							| 130 | 29 129 | syld |  |-  ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) ) | 
						
							| 131 | 130 | com23 |  |-  ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( ( ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) ) | 
						
							| 132 | 131 | 3impib |  |-  ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) | 
						
							| 133 | 132 | com15 |  |-  ( ph -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) | 
						
							| 134 | 3 133 | mpd |  |-  ( ph -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) | 
						
							| 135 | 134 | imp31 |  |-  ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) | 
						
							| 136 | 16 135 | syld |  |-  ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) |