Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) |
2 |
1
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. CC ) |
3 |
|
ax-icn |
|- _i e. CC |
4 |
3
|
a1i |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> _i e. CC ) |
5 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR ) |
6 |
5
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC ) |
7 |
4 6
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( _i x. B ) e. CC ) |
8 |
2 7
|
addcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A + ( _i x. B ) ) e. CC ) |
9 |
|
simprl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) |
10 |
9
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) |
11 |
|
simprr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) |
12 |
11
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. CC ) |
13 |
4 12
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( _i x. D ) e. CC ) |
14 |
10 13
|
addcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + ( _i x. D ) ) e. CC ) |
15 |
8 14
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. CC ) |
16 |
15
|
replimd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) = ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) + ( _i x. ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) ) |
17 |
8 14
|
remuld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) - ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) ) ) |
18 |
1 5
|
crred |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Re ` ( A + ( _i x. B ) ) ) = A ) |
19 |
9 11
|
crred |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Re ` ( C + ( _i x. D ) ) ) = C ) |
20 |
18 19
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) = ( A x. C ) ) |
21 |
1 5
|
crimd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Im ` ( A + ( _i x. B ) ) ) = B ) |
22 |
9 11
|
crimd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Im ` ( C + ( _i x. D ) ) ) = D ) |
23 |
21 22
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) = ( B x. D ) ) |
24 |
20 23
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) - ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) ) = ( ( A x. C ) - ( B x. D ) ) ) |
25 |
17 24
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( A x. C ) - ( B x. D ) ) ) |
26 |
8 14
|
immuld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) + ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) ) ) |
27 |
18 22
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) = ( A x. D ) ) |
28 |
21 19
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) = ( B x. C ) ) |
29 |
27 28
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) + ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) ) = ( ( A x. D ) + ( B x. C ) ) ) |
30 |
26 29
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( A x. D ) + ( B x. C ) ) ) |
31 |
30
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( _i x. ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) = ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) |
32 |
25 31
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) + ( _i x. ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) = ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) |
33 |
16 32
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) = ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) |
34 |
33
|
fveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( abs ` ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) ) |
35 |
34
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( abs ` ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) ^ 2 ) ) |
36 |
8 14
|
absmuld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ) |
37 |
36
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ^ 2 ) ) |
38 |
8
|
abscld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( A + ( _i x. B ) ) ) e. RR ) |
39 |
38
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( A + ( _i x. B ) ) ) e. CC ) |
40 |
14
|
abscld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( C + ( _i x. D ) ) ) e. RR ) |
41 |
40
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( abs ` ( C + ( _i x. D ) ) ) e. CC ) |
42 |
39 41
|
sqmuld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) x. ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) ) |
43 |
|
absreimsq |
|- ( ( A e. RR /\ B e. RR ) -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
44 |
|
absreimsq |
|- ( ( C e. RR /\ D e. RR ) -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
45 |
43 44
|
oveqan12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) x. ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
46 |
37 42 45
|
3eqtrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
47 |
1 9
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A x. C ) e. RR ) |
48 |
5 11
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. D ) e. RR ) |
49 |
47 48
|
resubcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A x. C ) - ( B x. D ) ) e. RR ) |
50 |
1 11
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A x. D ) e. RR ) |
51 |
5 9
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. C ) e. RR ) |
52 |
50 51
|
readdcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A x. D ) + ( B x. C ) ) e. RR ) |
53 |
|
absreimsq |
|- ( ( ( ( A x. C ) - ( B x. D ) ) e. RR /\ ( ( A x. D ) + ( B x. C ) ) e. RR ) -> ( ( abs ` ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) ^ 2 ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) ) |
54 |
49 52 53
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( abs ` ( ( ( A x. C ) - ( B x. D ) ) + ( _i x. ( ( A x. D ) + ( B x. C ) ) ) ) ) ^ 2 ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) ) |
55 |
35 46 54
|
3eqtr3d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) - ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) + ( B x. C ) ) ^ 2 ) ) ) |