| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) | 
						
							| 2 | 1 | recnd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) | 
						
							| 3 | 2 | sqcld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C ^ 2 ) e. CC ) | 
						
							| 4 |  | simprr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. CC ) | 
						
							| 6 | 5 | sqcld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( D ^ 2 ) e. CC ) | 
						
							| 7 | 3 6 | addcomd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( C ^ 2 ) + ( D ^ 2 ) ) = ( ( D ^ 2 ) + ( C ^ 2 ) ) ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( D ^ 2 ) + ( C ^ 2 ) ) ) ) | 
						
							| 9 |  | bhmafibid1 |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( D e. RR /\ C e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( D ^ 2 ) + ( C ^ 2 ) ) ) = ( ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) + ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) ) ) | 
						
							| 10 | 9 | ancom2s |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( D ^ 2 ) + ( C ^ 2 ) ) ) = ( ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) + ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) ) ) | 
						
							| 11 |  | simpll |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. CC ) | 
						
							| 13 | 12 5 | mulcld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A x. D ) e. CC ) | 
						
							| 14 |  | simplr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR ) | 
						
							| 15 | 14 | recnd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC ) | 
						
							| 16 | 15 2 | mulcld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. C ) e. CC ) | 
						
							| 17 | 13 16 | subcld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A x. D ) - ( B x. C ) ) e. CC ) | 
						
							| 18 | 17 | sqcld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) e. CC ) | 
						
							| 19 | 12 2 | mulcld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A x. C ) e. CC ) | 
						
							| 20 | 15 5 | mulcld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. D ) e. CC ) | 
						
							| 21 | 19 20 | addcld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A x. C ) + ( B x. D ) ) e. CC ) | 
						
							| 22 | 21 | sqcld |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) e. CC ) | 
						
							| 23 | 18 22 | addcomd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) + ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) ) | 
						
							| 24 | 8 10 23 | 3eqtrd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( ( A x. C ) + ( B x. D ) ) ^ 2 ) + ( ( ( A x. D ) - ( B x. C ) ) ^ 2 ) ) ) |