Metamath Proof Explorer


Theorem bi2anan9

Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995)

Ref Expression
Hypotheses bi2an9.1
|- ( ph -> ( ps <-> ch ) )
bi2an9.2
|- ( th -> ( ta <-> et ) )
Assertion bi2anan9
|- ( ( ph /\ th ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) )

Proof

Step Hyp Ref Expression
1 bi2an9.1
 |-  ( ph -> ( ps <-> ch ) )
2 bi2an9.2
 |-  ( th -> ( ta <-> et ) )
3 pm4.38
 |-  ( ( ( ps <-> ch ) /\ ( ta <-> et ) ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) )
4 1 2 3 syl2an
 |-  ( ( ph /\ th ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) )