Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bi2an9.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| bi2an9.2 | |- ( th -> ( ta <-> et ) ) |
||
| Assertion | bi2anan9 | |- ( ( ph /\ th ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | bi2an9.2 | |- ( th -> ( ta <-> et ) ) |
|
| 3 | pm4.38 | |- ( ( ( ps <-> ch ) /\ ( ta <-> et ) ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( ph /\ th ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) ) |