Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bi2an9.1 | |- ( ph -> ( ps <-> ch ) ) |
|
bi2an9.2 | |- ( th -> ( ta <-> et ) ) |
||
Assertion | bi2anan9r | |- ( ( th /\ ph ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | bi2an9.2 | |- ( th -> ( ta <-> et ) ) |
|
3 | 1 2 | bi2anan9 | |- ( ( ph /\ th ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) ) |
4 | 3 | ancoms | |- ( ( th /\ ph ) -> ( ( ps /\ ta ) <-> ( ch /\ et ) ) ) |