Description: Deduction joining two biconditionals with different antecedents. (Contributed by NM, 12-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bi2an9.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| bi2an9.2 | |- ( th -> ( ta <-> et ) ) |
||
| Assertion | bi2bian9 | |- ( ( ph /\ th ) -> ( ( ps <-> ta ) <-> ( ch <-> et ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | bi2an9.2 | |- ( th -> ( ta <-> et ) ) |
|
| 3 | 1 | adantr | |- ( ( ph /\ th ) -> ( ps <-> ch ) ) |
| 4 | 2 | adantl | |- ( ( ph /\ th ) -> ( ta <-> et ) ) |
| 5 | 3 4 | bibi12d | |- ( ( ph /\ th ) -> ( ( ps <-> ta ) <-> ( ch <-> et ) ) ) |