Description: Inference associated with biadan . (Contributed by BJ, 4-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | biadani.1 | |- ( ph -> ps ) |
|
| Assertion | biadani | |- ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadani.1 | |- ( ph -> ps ) |
|
| 2 | biadan | |- ( ( ph -> ps ) <-> ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) ) ) |
|
| 3 | 1 2 | mpbi | |- ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) ) |