Metamath Proof Explorer


Theorem biadani

Description: Inference associated with biadan . (Contributed by BJ, 4-Mar-2023)

Ref Expression
Hypothesis biadani.1
|- ( ph -> ps )
Assertion biadani
|- ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 biadani.1
 |-  ( ph -> ps )
2 biadan
 |-  ( ( ph -> ps ) <-> ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) ) )
3 1 2 mpbi
 |-  ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) )