Description: Alternate proof of biadani not using biadan . (Contributed by BJ, 4-Mar-2023) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | biadani.1 | |- ( ph -> ps ) |
|
Assertion | biadaniALT | |- ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadani.1 | |- ( ph -> ps ) |
|
2 | pm5.32 | |- ( ( ps -> ( ph <-> ch ) ) <-> ( ( ps /\ ph ) <-> ( ps /\ ch ) ) ) |
|
3 | 1 | pm4.71ri | |- ( ph <-> ( ps /\ ph ) ) |
4 | 3 | bibi1i | |- ( ( ph <-> ( ps /\ ch ) ) <-> ( ( ps /\ ph ) <-> ( ps /\ ch ) ) ) |
5 | 2 4 | bitr4i | |- ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) ) |