Metamath Proof Explorer


Theorem biadaniALT

Description: Alternate proof of biadani not using biadan . (Contributed by BJ, 4-Mar-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis biadani.1
|- ( ph -> ps )
Assertion biadaniALT
|- ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 biadani.1
 |-  ( ph -> ps )
2 pm5.32
 |-  ( ( ps -> ( ph <-> ch ) ) <-> ( ( ps /\ ph ) <-> ( ps /\ ch ) ) )
3 1 pm4.71ri
 |-  ( ph <-> ( ps /\ ph ) )
4 3 bibi1i
 |-  ( ( ph <-> ( ps /\ ch ) ) <-> ( ( ps /\ ph ) <-> ( ps /\ ch ) ) )
5 2 4 bitr4i
 |-  ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) )