Description: Deduction associated with biadani . Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | biadanid.1 | |- ( ( ph /\ ps ) -> ch ) |
|
biadanid.2 | |- ( ( ph /\ ch ) -> ( ps <-> th ) ) |
||
Assertion | biadanid | |- ( ph -> ( ps <-> ( ch /\ th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadanid.1 | |- ( ( ph /\ ps ) -> ch ) |
|
2 | biadanid.2 | |- ( ( ph /\ ch ) -> ( ps <-> th ) ) |
|
3 | 2 | biimpa | |- ( ( ( ph /\ ch ) /\ ps ) -> th ) |
4 | 3 | an32s | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
5 | 1 4 | mpdan | |- ( ( ph /\ ps ) -> th ) |
6 | 1 5 | jca | |- ( ( ph /\ ps ) -> ( ch /\ th ) ) |
7 | 2 | biimpar | |- ( ( ( ph /\ ch ) /\ th ) -> ps ) |
8 | 7 | anasss | |- ( ( ph /\ ( ch /\ th ) ) -> ps ) |
9 | 6 8 | impbida | |- ( ph -> ( ps <-> ( ch /\ th ) ) ) |