Description: Deduction associated with biadani . Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | biadanid.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| biadanid.2 | |- ( ( ph /\ ch ) -> ( ps <-> th ) ) |
||
| Assertion | biadanid | |- ( ph -> ( ps <-> ( ch /\ th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biadanid.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| 2 | biadanid.2 | |- ( ( ph /\ ch ) -> ( ps <-> th ) ) |
|
| 3 | 2 | biimpa | |- ( ( ( ph /\ ch ) /\ ps ) -> th ) |
| 4 | 3 | an32s | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
| 5 | 1 4 | mpdan | |- ( ( ph /\ ps ) -> th ) |
| 6 | 1 5 | jca | |- ( ( ph /\ ps ) -> ( ch /\ th ) ) |
| 7 | 2 | biimpar | |- ( ( ( ph /\ ch ) /\ th ) -> ps ) |
| 8 | 7 | anasss | |- ( ( ph /\ ( ch /\ th ) ) -> ps ) |
| 9 | 6 8 | impbida | |- ( ph -> ( ps <-> ( ch /\ th ) ) ) |